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Chapter 1

Introduction

In computer science and machine learning research, the investigation of the qualitative

properties of a data set are a crucial part of data analysis (Kaski and Peltonen, 2011). As

the dimension increases, the ability to analyse the topological properties of a given data

set becomes even more important. This problem can become computationally expensive

for large random point cloud data sets sampled from a probability distribution. Very often

data is generated as an unordered sequence of points in Euclidean space (Ludu, 2016). This

data can be in the form of time series generated from sensors, point cloud data from 3D

scans and motion capture data. The unordered sequence of data can reside in a very high

dimensional space. The global topology of the essential information or structure behind

the data can give important information about the underlying event which generated the

data. This type of point cloud data can be sampled from any 2-, 3-, or higher-dimensional

object.

Parts of this research focused on extracting global topological information about the struc-

ture of objects represented by data sets of discrete sample points. Point cloud data can

appear in both low and high dimensions, and in both cases, can represent the same un-

derlying object. The topology type can be calculated for both representations, and should

then be identical. Maybe it is not crucial in dimensionality reduction to preserve the

topology but more importantly to preserve the information so that classifiers or other

1



Chapter 1. Introduction 2

machine learning techniques do very well. However, this thesis focuses on aspects of non-

linear dimensionality reduction that either preserve or change the topology of the manifold

underlying the data. One difficulty that can occur in this context lies in distinguishing

between the topological features of the actual point cloud data and the topological features

of the underlying manifold. Some of this difficulty is related to the random nature of point

clouds.

One way to control or analyse high-dimensional data is to apply dimensionality reduction.

In this thesis, we focused on manifold learning, that is, non-linear dimensionality reduction

(Lee and Verleysen, 2007). In the potential applications of manifold learning, the topology

and dimensionality of data can vary significantly.

For some applications, such as clustering, optimisation and embeddings of low-dimensional

manifolds, the calculation time to reduce dimensionality and to determine the topology

can be significant, and depends on the number of sample points. This provides motivation

for the exploration of accurate and more rapid methods for validating manifold learning

techniques with the help of various topology tools. We review techniques for quality

assessment of manifold learning and propose the use of persistent homology to evaluate the

topological impact of manifold learning by comparing the Betti numbers of test manifolds

before and after dimensionality reduction. A non-linear projection of data into a lower-

dimensional space is regarded to be of good quality if the connections (e.g., edges and

faces) between neighbouring data points after the projection reflect the same topological

relationships as before the projection (Gashler et al., 2011).

Persistent homology (PH) is an algebraic method for measuring topological features of var-

ious shapes and functions. It has many applications, for example, in the fields of computer

vision and image analysis. PH is a response to the challenge that one encounters when

trying to assign topological invariants to manifolds that are represented by point clouds.

Data in high-dimensional spaces is ubiquitous across a variety of domains. A major prob-

lem in data analysis is how to create effective schemes to reduce the dimensionality while

maintaining or improving the ability to make geometric and statistical inferences (Carlsson

et al., 2009).
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Motivated by the importance of topology in machine learning and data analysis, an im-

portant question is how can we validate the preservation of topological features of data

during manifold learning and optimisation. In this work, topological methods are devel-

oped to address validation of non-linear dimensionality reduction. These studies include

improvements over current algorithms that are demonstrated by simulation experiments.

It is essential for data analysis to investigate the number of connected components as

well as any holes present in the data. In 3-dimensional data, as well as in data of higher

dimensions, there are more topological properties, such as tunnels, pretzels and voids and

their higher dimensional analogous, that need to be considered. PH uses hole counts in

various dimensions and gives a classification of holes in terms of Betti numbers. Betti

numbers can therefore be used to determine the similarity of manifold data with respect

to the topology.

Computational topology algorithms and manifold learning techniques are all very costly

algorithms. For most of these methods, data must be loaded into the physical memory

to compute simplices which determine the topology of the data. This requires efficient

updates and computation of huge simplicial complexes that have a persistent topology

type, even when the distribution of the data and parameters might change slightly based

on sample selection variations. It can become computationally infeasible to calculate

the topology of point cloud data if the number of sample points increases in the data.

However, due to the complex structure of some manifolds and real-world data, substantial

numbers of data points are necessary to understand the topology underlying the manifold.

These considerations motivated the deep learning-based solutions to topology estimation

investigated in Chapter 4.

Another aspect that can be investigated in the context of point cloud data are the lo-

cal minima and maxima of functions on a dataset. In this context the thesis explores

solutions to optimisation on manifolds. The thesis reports on example experiments of a

proposed solution for a problem that the standard solver in Matlab was not able to pro-

cess successfully. We also compared our results in terms of time complexity where my

experiments indicate that it was linear if the number of sample points of the manifold was

increased. Optimisation on manifolds is another form of modern non-linear techniques

associated with various data. Riemannian optimisation generalises tools from continuous,
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unconstrained optimisation, such as gradient descent, Newton methods and trust-region

methods. In transitioning from the classical Euclidean case to Riemannian search spaces,

some features are lost such as certain convergence guarantees for these processes. Under

substantially the same conditions, global and local convergence results can be established

as shown in the theory laid out by Absil et al. (2010).

It is always useful for the community to apply the outcomes of research to real-world

industrial data. Often industry data is simple and traditional linear techniques are ap-

propriate but sometimes it can be complicated, non-linear and very high dimensional. To

deal with this data appropriately can also be more computationally costly than expected.

This observation motivated the inclusion of an industrial research component in Chapter 5

that used several meta-heuristic techniques on a given real-world task.

Research Objectives

1. When manifold learning is applied to point cloud data, difficulties can arise because

the point clouds are generated using uniform random numbers 1. The underlying

manifolds can be very complex and non-linear dimensionality reduction can cause

geometrical distortions that are so substantial that the original neighbourhood struc-

ture of the points on the manifolds is modified. This is referred to as topological

distortion (Aupetit, 2007). Therefore, the first objective of this research was to val-

idate the process of non-linear dimensionality reduction technique when applied to

point cloud data that represents manifolds of different topological complexity.

2. Traditional techniques to calculate PH can become too computationally costly for

large point cloud data. The computational complexity of these techniques can be-

come exponential in space and time (Otter et al., 2017). Therefore, the second

research objective was to identify faster and computationally less expensive alter-

natives to the traditional algorithms for PH. Our hypothesis was that deep neural

networks could recognise an object’s topology from sample data.

1The random number could be generated according to Uniform, Gaussian or other distribution. A
detailed analysis and discussion of the impact of the different sampling mechanisms were beyond the scope
of this thesis.



Chapter 1. Introduction 5

3. Optimisation on Riemannian manifolds is a well-established research area with many

applications. However, it has been established that these methods are excessively

slow in high dimensions (Absil et al., 2010). Our third objective was to explore the

possibility of a faster approach by applying unconstrained optimisation to general

differentiable manifolds.
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1.1 Background

1.1.1 Topological Space

Topology is a branch of mathematics that is related to analysis, geometry and algebra. A

metric space is a set together with a distance function defined on pairs of points, satisfying

certain conditions.

In school geometry, one begins with the study of maps that preserve congruence, followed

by those preserving similarity. This involves the preservation of nearness of points to

sets (Naimpally and Peters, 2013). The most common way to measure distances is a

metric in a metric space.

Definition 1.1. If X is a set, metric on X is a function d : X × X → R satisfying

(i) d(x, y) ≥ 0 for all x, y ∈ X with equality if and only if x = y.

(ii) d(x, y) = d(y, x) for all x, y ∈ X

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X

A metric space is a set X together with a specific choice of metric d on X . Sometimes we

will say “Let (X , d) be a metric space”. If X is a metric space with metric d, the elements

of X are usually called its points, because we think of X as a “space” having a certain

“shape”, rather than just as a set. The number d(x, y) is called the distance from x to y.

More general, a topological space is a set together with a structure leading to the study

of continuous functions from one topological space to another.

Definition 1.2. Let M be a set and P(M) be the power set of M , i.e., the set of all

subsets of M (Lee and Verleysen, 2007).

A set O ⊆ P(M) is called a topology, if it satisfies the following:

(i) ∅ ∈ O, M ∈ O

(ii) U ∈ O, V ∈ O =⇒ U ∩ V ∈ O
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(iii) Uα ∈ O, α ∈ A (A is an index set =⇒
(⋃

α∈A Uα
)
∈ O

Terminology:

1. the tuple (M,O) is a topological space.

2. U ∈M is an open set if U ∈ O.

3. U ∈M is a closed set if M \ U ∈ O.

1.1.2 Topological Manifolds

Manifolds are topological spaces that look locally like Euclidean space. A little more

precisely it is a space together with a way of identifying it locally with a Euclidean space

that is compatible on overlap.

Some topological spaces can be charted analogously to how the earth is charted in an

atlas. This particular type of topological space is called a topological manifold. The basic

definition of a topological manifold was developed more than 100 years ago (C.F. Gauss

1777-1855) in mathematics and is now central to geometry and topology. It generalises

the concepts of curves and surfaces and addresses these objects without referring to any

neighbouring ambient space. There are several different ways to introduce the fundamen-

tals of manifold theory. Many of them are designed as a basis for further general and

formal mathematical studies, for example, in geometric topology or differential geometry.

The following statements aim to give a concise and geometrically intuitive overview of the

basic definitions and terminology of manifold theory, as they are essential for practical

applications in computer science, computer graphics and machine learning.

A topological space (M,O) is called a d-dimensional topological manifold if for all

points p ∈M , there is a open set U around the point p in respect to the topology O, such

that there is a homeomorphism x onto Rd. This can be expressed as below:

∀p ∈M : ∃U ∈ O : p ∈ U ,∃x : U → x(U) ⊆ Rd (1.1)

satisfying the following:
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(i) x is invertible: x−1 : x(U)→ U

(ii) x is continuous w.r.t. (M,O) and (Rd,Ostd)

(iii) x−1 is continuous

Further, the standard demand is that M is a Hausdorff space and its topology has a

countable basis. Not all topologies are Hausdorff. Non-Hausdorff spaces can display

unusual and counterintuitive behaviour. From the perspective of mathematical iterative

algorithms, the most troubling event is that a converging sequence on a non-Hausdorff

topological space may have many discrete limit points (Absil et al., 2009). Our definition

of manifolds rules out non-Hausdorff topologies (Lee, 2010):

Definition: a d-dimensional topological manifold is a second countable Hausdorff

space that is locally Euclidean of dimension d.

Definition: A topological space X is Hausdorff if for any x, y ∈ X with x 6= y there exist

open sets U containing x and V containing y such that U ∩ V = ∅ (Lee, 2010).

Since the only manifolds considered in this thesis are topological manifolds, they are

simply referred to as d-dimensional manifolds, or even just manifolds. The most

obvious example of an n-manifold is Rn itself.

Fig.1.1 shows a torus topological manifold.

Sometimes it is desirable to judge the suitable conditions not on the object itself but

on a chart representation of that real world object. Sometimes this is the only way to

define properties like continuity of real world objects or a curve in the real world. In our

experiment, we will be using the Swiss roll and heated Swiss roll (Lee and Verleysen, 2007)

manifolds for all our comparisons and topology investigations.

1.1.3 Manifold Models

According to Whitney (1936), any d-manifold can be embedded in R2d+1 , meaning that

2d+ 1 dimensions at most are necessary to embed a d-manifold. Dimensionality reduction

of manifolds involves the learning of the manifold structure. The charts and the atlas,
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which can make the manifolds, as well as the map, define the topological space for a given

manifold. For example, a sphere is a (compact) 2-manifold that can be embedded in R3

but not in R2.

Figure 1.1: Topological manifold

1.1.4 Differential Manifold

A differentiable structure for a manifold M is an atlas (Ui, xi)i∈J of M which is maximal

and possess the property that, for all regions of intersection Ui ∩ Uj 6= ∅, i, j ∈ J all chart

transitions

xjx
−1
i , xix

−1
j : Rd → Rd (1.2)

are differentiable. A differentiable manifold of dimension d ≥ 1 is a d-dimensional topo-

logical manifold M with a differentiable structure. For each point p of a d-dimensional

differentiable manifold M , there is a tangent space TpM which has the same dimension as

the manifold’s model space Rd. Intuitively, TpM can be interpreted as a linear approxima-

tion of M in p. There are many different ways to formally define the tangent space. Since

we may assume that M is embedded in some Rm, the tangent space at point p can be

defined as the subspace spanned by the tangent vectors of all smooth curves in M through

point p.
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For example, The euclidean spaces Rn and the n-spheres Sn = {x ∈ Rn; ‖x‖ = 1} are

n-dimensional manifolds.

1.1.5 Riemannian Manifolds

Topological and differentiable manifolds are objects of research in geometric and differen-

tial topology. To study the properties of manifolds with differentiable deformations (i.e.,

homeomorphisms and diffeomorphisms, respectively), metric structures on differentiable

manifolds must be taken into account. By defining a dot product intrinsic to each mani-

fold, the lengths of tangent vectors and the angles between them can be measured. This

allows measurement of the lengths of curves on the manifolds and allows study of geometric

properties such as curvature.

A Riemannian metric for a differentiable manifold M is a dot product for each tangent

space TpM which depends smoothly on the base point p ∈M . A Riemannian manifold

is a differentiable manifold with a Riemannian metric. Every differentiable manifold can

be equipped with a Riemannian metric. The dot product of a Riemannian manifold is rep-

resented by a positive definite, symmetric matrix where the coefficients depend smoothly

on the base point.

1.1.6 Persistent Homology

PH can be employed to analyse data sets of points that are sampled from such manifolds.

PH (Kaczynski et al., 2004) is an algebraic tool for measuring the topological properties

of a given data set. In particular, in the current experiment we intended to use persistent

Betti numbers. We recall some definitions.

PH provides us with tools for counting the holes and other topological features of manifolds

that are represented by point cloud data. It helps us to determine how many sample points

are required to describe a manifold and its topological features.

Simplicial complexes connect the data points using an n-dimensional triangular structure

from the original data. An abstract simplicial complex can be characterised by:
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1. A set Z of vertices or 0-simplices.

2. For each k ≥ 1, a set of k-simplices σ = [z0, z1, ..., zk] where zi ∈ Z.

3. Each k-simplex has k + 1 faces obtained by deleting one of the vertices.

The following membership property must be satisfied: if σ is in the simplicial complex,

then all faces of σ must be in the simplicial complex. We think of 0-simplices as vertices,

1-simplices as edges, 2-simplices as triangular faces, and 3-simplices as tetrahedrons (Tausz

et al., 2014a).
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Figure 1.2: (a) Points sampled from the Japanese flag manifold; (b) each point is
surrounded by a ball of radius r; (c) points and associated simplicial complex; (d) when
increasing the number of sample points, the number of connected components and holes

can change and approximates the values characteristic of the underlying manifold.

Betti numbers describe the number of n-dimensional holes in the data space. Bk is the

k-th Betti number and equates to the number of k-dimensional holes in the data set (Tausz
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et al., 2014a). Betti numbers can also tell us broadly about the topology of an examined

space or object. Suppose we sample random points from a given object. The corresponding

Betti numbers are a vector of random variables Bk.

Algebraic topology provides tools to describe the topological structure of objects such as

n-dimensional manifolds (Dold, 2012). PH is a concept in computational topology that was

designed for real applications where topological objects such as manifolds are represented

or approximated by sets of sample points (Carlsson et al., 2009; Edelsbrunner et al., 2000;

Ghrist, 2008; Tausz et al., 2014b).

The i-th Betti number of a topological space M ⊂ Rn is defined as Bi(M) = rank (Hi(M)),

where Hi(M) is the i-th singular homology group of M (Dold, 2012). Similarly, as the

Euler characteristic χ can be used to count the holes in manifolds, the Betti numbers can be

used for counting connected components, cavities, tunnels and related higher-dimensional

topological features of manifolds. The Betti numbers give a more detailed description of a

manifold’s topological structure than the Euler characteristic alone. The relation between

the Betti numbers and the Euler characteristic is

χ = B0 −B1 +B2 −B3 + ...+Bn (1.3)

where Bi is the i-th Betti number and equates to the number of i-dimensional holes in

the manifold. An i-dimensional hole can be interpreted as an area or volume bounded by

an (i− 1)-dimensional sphere. For manifolds in R3, only the first three Betti numbers are

relevant because no higher-dimensional holes can occur, i.e.

B0 = number of path-connected components

B1 = number of circular holes

B2 = number of 3-dimensional cavities or bubbles

For example, for the surface of a torus T 2, the 2-dimensional sphere S2, the Japanese flag

manifold J2, and the Swiss roll SR2
i with i = 0, 1, 3, and 7 holes, the first three Betti

numbers and the Euler characteristic χ are as follows:
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Manifold B0 B1 B2 χ

T 2 1 2 1 0

S2 1 0 1 2

SR2
0 1 0 0 1

J2, SR2
1 1 1 0 0

SR2
3 1 3 0 -2

SR2
7 1 7 0 -6

In order to associate a collection of points in Rn with a global object (e.g. a manifold M

which is the source of the data), each point x of the point cloud is used as a vertex of a

combinatorial graph whose edges are determined by neighbourhood balls Br(x) = {p ∈

Rn; d(x, p) ≤ r} of radius r (Ghrist, 2008).

An abstract simplicial complex S can be characterised by: 1) a set V of vertices or 0-

simplices; 2) for each k ≥ 1, a set of k-simplices σ = [z0, z1, ..., zk] where zi ∈ V ; and

3) each k-simplex has k + 1 faces obtained by deleting one of the vertices. The following

membership property must be satisfied: if σ is in S, then all faces of σ must be in S.

For 3-dimensional objects, 0-simplices are vertices, 1-simplices are edges, 2-simplices are

triangular faces, and 3-simplices are tetrahedrons. A simplicial complex can be defined as

a finite collection of simplices K such that, 1) if σ ∈ K and τ is a face of σ then τ ∈ K;

and 2) if σ, σ′ ∈ K then σ ∩ σ′ is either empty or a face of both (Edelsbrunner and Harer,

2010).

There are various ways to generate simplicial complexes from point clouds. A computa-

tionally efficient method is to generate a Vietoris-Rips complex, which is the simplicial

complex whose k-simplices are determined by unordered (k + 1)-tuples of points that are

pairwise within a given distance r > 0 (Ghrist, 2008; Tausz et al., 2014b).

An important parameter when converting a set of points into a simplicial complex is

the radius r of the neighbourhood balls Br(x). If r is sufficiently small, the complex

becomes a discrete set; if r is too big the complex fuses into a sole high-dimensional

simplex and information about essential topological features such as characteristic holes

of the manifold, is lost. Fig. 1.2 shows an intuitive example of the Japanese flag manifold
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that demonstrate how additional sample points and the suitable choice of r can remove

small holes to distinguish them from the larger hole that is characteristic of the manifold’s

topology. It can be seen that under certain niceness conditions, a discrete approximation

of a manifold can be achieved (Niyogi et al., 2008). However, in general, this approach

depends not only on the structure of the manifold, but also on the sample distribution.

Therefore, the process of ‘fattening’ points into balls can uncover essential topological

features of the manifold at one end, while simultaneously covering up essential features at

the other end of the manifold. Consequently, there may not be a suitable ball size for a

given point cloud. The idea of PH is not to use one complex with a fixed ball size, but

to use a filtration of complexes associated with a sequence of increasing ball sizes, and to

observe when topological features of the manifold occur and when they disappear in the

process (Ghrist, 2008). The features that persist longest in this process are then regraded

as essential.

1.1.7 Dimensionality Reduction

Statistical and machine learning methods face a formidable problem when dealing with

high dimensional data. Normally, the number of input variables are reduced before a

data mining algorithm can be successfully implemented. Dimensionality reduction can be

performed in two ways: either by only keeping the most appropriate variables from the

original dataset, or by exploiting the redundancy of the input data and finding a smaller

set of new variables. Both techniques result in a smaller set of data, each being a blend of

input variables containing the same information as the original data.

The intrinsic dimensionality of a data vector can be defined as the minimal number of

the parameters or latent variables required to describe the data vector. For more rigorous

definition of intrinsic dimensionality, see Chapter 3 of the book by Lee and Verleysen

(2007). Non-linear dimensionality reduction (DR) is also referred to as manifold learning.

The task of manifold learning can be described as, given a data set of dimension D,

determine its intrinsic dimensionality d, and extract a manifold of dimension d from the

data, where d < D or often d � D. The difficulty of manifold learning is to extract the

intrinsic manifold without changing its topology and geometry.
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In general, neither the topology, geometry or the intrinsic dimensionality of the dataset is

known in advance. Fig. 1.3 shows the techniques available for DR as described by van der

Maaten et al. (2009). Table 1.1 provides a list of the most used DR techniques in practice.

Table 1.1: Most used dimensionality reduction algorithms in the literature, listed
chronologically

1901 Principal Component Analysis (PCA)

1969 Sammon Mapping (SM)

1997 Curvilinear Component Analysis (CCA)

1998 Kernel PCA (KPCA)

2000 Isomap

2000 Locally Linear Embedding (LLE)

2001 Linear Discriminant Analysis (LDA)

2001 Laplacian Eigenmaps (LE)

2004 Maximum Variance Unfolding (MVU)

2006 Diffusion Maps (DM)

2008 t-Stochastic Neighbor Embedding (t-SNE)

2010 Maximum Entropy Unfolding (MEU)
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Figure 1.3: Taxonomy of dimensionality reduction (van der Maaten et al., 2009)
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1.1.8 Manifold Learning

The essential geometrical and topological information of a set of points can lie on a non-

linear, low-dimensional manifold that is embedded in a high-dimensional ambient vector

space. For most data sets in real-world pattern recognition applications, the underlying

manifold would initially be unknown. Through manifold learning, extraction of the under-

lying manifold can be attempted by mapping the data into a space of lower dimension (Lee

and Verleysen, 2007; van der Maaten et al., 2009).

The minimum dimensionality of a manifold’s ambient space depends on the topological

properties of the manifold. In some cases, the ambient space could be of the same di-

mension, and in other cases, it may require a higher dimension than the manifold. For

example, an n-dimensional sphere Sn can be embedded in Rn+1 or any higher-dimensional

Euclidean space. According to a theorem by Whitney (1936), every n-dimensional, smooth

manifold can be embedded in a 2n-dimensional ambient space. Variations of this result

exist in special cases and for more general manifolds (Hirsch, 1976). In real-world tasks, for

example, in computer vision when the data consists of digital images, the ambient space

is often of a much larger dimension than the intrinsic dimensionality of the underlying

manifold. In these cases, dimensionality reduction can help to reduce computational com-

plexity without changing the nature of the data, and can lead to a better understanding

of the data.

Traditional approaches to DR, such as Principal Component Analysis (PCA) (Jolliffe,

2002) and Multi-Dimensional Scaling (MDS) (Cox and Cox, 2000), can recover the true

dimensionality of intrinsic manifolds from high-dimensional data, but only when the re-

lationship between the high-dimensional representation and the low-dimensional latent

variables is approximately linear (Mardia et al., 1979).

Manifold learning is synonymous with non-linear DR (Lee and Verleysen, 2007). Manifold

learning typically tries to find a non-linear mapping from a high-dimensional space to

a lower-dimensional space, that preserves the topological or local geometrical structure

of the manifold underlying the data (Baraniuk and Wakin, 2009). Example methods

include Isomap (Tenenbaum et al., 2000), Locally Linear Embedding (LLE) (Roweis and

Saul, 2000a) and Maximum Entropy Unfolding (MEU) (Lawrence, 2012). LLE tries to
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preserve the local linear neighbourhood structure of the points taken from the point cloud

data. Isomap attempts to learn an isometric embedding of manifolds while trying to

preserve the geodesic distances between points on the manifold. MEU uses the non-linear

generalisation of PCA. It uses spectral dimensionality reduction which views these methods

as Gaussian Markov random fields. It also uses the maximum entropy principle to get the

maximum variance unfolding. All these methods used for dimensionality reduction. As

we consider only k-nearest neighbour methods for dimensionality reduction in this thesis,

other methods can be explored as one of the future work.

Geodesic distances are approximated by distances in k-nearest neighbour graphs and

by avoiding any measurements that would exit the manifold and significantly short cut

through the ambient space. A suitable k has to be determined upfront for each combi-

nation of manifold and DR method. A goal of these methods is to embed the manifold

data authentically into a lower-dimensional space where it is easier to analyse. Each of

the methods can cause distortions, folds, rips at the edges, or the emergence of additional

holes and cavities during the DR process (Akkucuk and Carroll, 2006; Balasubramanian

and Schwartz, 2002a; Li et al., 2005; Saul et al., 2006).

1.1.9 Principal Component Analysis (PCA)

PCA (Hotelling, 1933) is a linear technique for DR. PCA is performed by embedding

the high dimensional data into a linear subspace of lower dimension. Although there are

many linear DR techniques available, PCA is by far the most popular and effective linear

DR technique. Therefore, in this thesis only PCA is included. PCA creates the low-

dimensional representation of the data with the help of variance from the data. It finds

the linear basis of reduced dimensionality for the data where the variance is maximum.

Suppose we have a high-dimensional dataset in the form of a matrix. In some cases, the

dimensions can be thought of as directions that the information varies along. If we want

to reduce the dimensionality of the information, then what we want to do is to find an

approximate ‘basis’ to the set of direction. That is, we want to find only the crucial

dimensions that serve most of the information of the other dimensions. The idea here is

that the dimensions we discard are in some sense duplicates of the dimensions we keep
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because they can be reconstructed from the small set of linear basis. PCA calculates, as the

input into most other multidimensional scaling techniques, a pairwise Euclidean distance

matrix D whose entries dij represent the Euclidean distance between the high-dimensional

data points xi and xj . Classical scaling finds the linear mapping M that minimises the

cost function ∑
i,j

(d2
ij − ‖yi − yj‖2) (1.4)

in which ‖yi − yj‖2 is the Euclidean distance between the low dimensional datapoints yi

and yj which are represented from high-dimensional points xi and xj .

PCA may also be used as probabilistic PCA (Roweis, 1998) which uses a Gaussian prior

over the latent space, and a linear-Gaussian noise model. The probabilistic formulation

of PCA leads to an Expectation-Maximization algorithm which is computationally more

efficient for very high-dimensional data. By using Gaussian processes, probabilistic PCA

may also be extended to learn nonlinear mappings between the high-dimensional and the

low-dimensional space (Lawrence, 2005). Another extension of PCA uses the eigenvec-

tors corresponding to the most significant eigenvalues in the linear mapping (as principal

components) relevance in embedding.

1.1.10 Isomap

PCA has been shown to be successful in many applications, but it is limited by the fact

that it primarily aims to preserve pairwise Euclidean distances, and does not consider the

distribution of the neighbouring data points or neighbourhood. If the high-dimensional

data lies on or near a curved manifold, such as in the Swiss roll dataset which is explained

in Chapter 2, PCA may consider two data points to be very near, whereas their distance

over the manifold or geodesical distance is much larger than the typical Euclidean distance.

Isomap (Balasubramanian and Schwartz, 2002a) is a technique that resolves this problem

by attempting to preserve pairwise geodesic distances between data points. Geodesic

distance is calculated by estimating the distance over a curved surface.

Specifically, geodesic distance is calculated by generating the neighbourhood graph. In a

neighbourhood graph, every data point is connected with its k nearest neighbours from
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the data set. The shortest path between two points from the dataset in the graph forms

an estimate of the geodesic distance between these two points, as determined using curve

fitting. This has to be repeated for all the points in the data set. Therefore, we obtain the

pairwise geodesic distance matrix for all points. In the low-dimensional representation,

preservation of the pairwise distance is attempted.

An important drawback of the Isomap algorithm is that it makes the object topologically

unstable after projection (Balasubramanian and Schwartz, 2002b). Isomap may construct

erroneous connections in the neighbourhood graph. These errors can make the object

topologically different from the original object. Another weakness of Isomap is that it

cannot perform well if holes present in the manifold. This issue can be managed by tearing

manifolds with holes (Li et al., 2005) or by increasing the sample points per cycle. Isomap

can easily deal with ‘open’ structures, but fails to recover an object in low dimensions

when the data structure is ‘closed’, such as when there are regularly arranged points on a

sphere (Akkucuk and Carroll, 2006). Fig. 1.4 shows successful embedding of a Swiss Roll

(SR) Fig. 2.1a and Heated Roll (HR) Fig. 2.1e into the 2-dimensional plane.
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Figure 1.4: Low dimensional embedding of SR (upper graph) and HR (lower graph)
using Isomap.

1.1.11 Locally Linear Embedding (LLE)

Local Linear Embedding (LLE) (Roweis and Saul, 2000b) is a method that is similar to

Isomap, in that it builds a graphical representation of the data points. However, in contrast

to Isomap, it attempts to preserve local properties of the data. As a result, LLE is less
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sensitive to short-circuiting than Isomap, because only a small number of local properties

are affected if short-circuiting occurs. Furthermore, the protection of local properties

allows for successful embedding of non-convex manifolds. In LLE, the local properties of

the data manifold are captured by expressing the high-dimensional data points as linear

combinations of their nearest neighbours. In the low-dimensional representation of the

data, LLE attempts to retain the reconstruction weights of these linear combinations as

well as possible.

LLE describes the local properties of a manifold around a datapoint xi with the help of

a linear combination with weights wi of its k nearest neighbours. Thus, LLE generates

a hyperplane through the point xi and its nearest neighbours, assuming the manifold is

locally linear. The local linearity assumption make the weights wi invariant to translation,

rotation and rescaling during reconstruction in a lower dimension. In other words, if the

high-dimensional data representation preserves the local geometry of the manifold, it can

help to reconstruct the weights in a lower dimension.

1.1.12 Optimisation over Manifolds

Manifolds are of interest in optimisation theory because of their applicability to abstract

geometry. Their ability to provide a geometrical understanding of higher dimensional

surfaces, curves and volumes are the key to development of better smart algorithms, not

only within optimisation theory but also for other problems with a complicated structure.

The general terminology of optimisation is used in this study. It will always be assumed

that the manifolds considered are sufficiently smooth.

A small neighbourhood of a point x in the manifold can be approximated in the Euclidean

space. This phenomenon suggests that all numerical methods used for Euclidean spaces

can be applied to a manifold.

An optimisation problem can be described as follows :

min
x

f(x)

subject to ci(x) ≤ 0, i = 1, . . . ,m.
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An optimisation problem is defined by minimisation (or maximisation) of a function over a

set of constraints. The constraints are referred to as the equality and inequality constraints

which represent a matrix of real numbers, typically Rn or Rn×p. The objective function

or the constraint region leads to various optimisation techniques, including linear, non-

linear and quadratic techniques. Another subclass of optimisation problems discussed in

this paper is the optimisation of a function over a manifold. The general optimisation

formulation can be used to formulate this kind of optimisation problem. We can directly

use the manifold as a representation of equality and inequality constraints, such as with a

Stiefel manifold (Kvernelv, 2013). However, in some cases, the constraint region may not

be defined explicitly. Then, the optimisation problem becomes:

min
x∈M

f(x)

Where M is the search space manifold for the problem. It can be formulated as an

unconstrained optimisation problem, but as the search space is a manifold, we need several

geometrical concepts that can be used in optimisation theory, and we need gradients,

directional derivatives and Hessians in the more general context of a manifold.

Recently, optimisation over manifolds has drawn attention as it can be extended to a vast

variety of robotics and machine learning applications. Optimisation over manifolds has

turned out to be more practical, as it can lessen the dimension of the problem in contrast

with the ambient space. Its applications appear in medicine (Adler et al., 2002), signal pro-

cessing (Manton, 2002), machine learning (Nishimori and Akaho, 2005), computer vision

(Helmke et al., 2004; Ma et al., 2001), and robotics (Helmke et al., 2002a,b). Optimisa-

tion approaches on manifolds can be categorised into Riemannian approaches (Ring and

Wirth, 2012; Smith, 1994) and non-Riemannian approaches. The current research focuses

on non-Riemannian approaches.

1.1.13 Meta Heuristic Search for High Dimensional Data (Industry Data)

Service delivery organizations (SDOs) provide operations support, sales services and in-

formation technology services such as transaction processing. It is not uncommon for

organisations to handle a large volume of data transactions (of the order of a few hundred
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thousand) every day. In addition to the volume and dimension of data, organisations often

face issues associated with the inter-arrival rate of the task and the different types of trans-

actions that they handle. Furthermore, organisations have to meet SLAs agreed upon with

clients, and are always required to perform better in terms of optimal cost and operational

efficiency. An example SLA could be that 98% of transactions should be completed within

one hour (i.e., the turnaround time of transactions should be less than one hour for at

least 98% of transactions). Apart from SLAs, organisations typically define operational

key performance indicators (KPIs) to monitor an organisation’s performance and its way

of working. Processing time of transactions (i.e., the actual amount of time spent in pro-

cessing a transaction), resource utilisation and productivity are a few examples of KPIs

(Mulla et al., 2016). Client-level SLAs are often translated into several operational KPIs

in order to closely track an organisation’s performance. For example, turnaround time of

each transaction is broken down into expected processing times (referred to as baselines)

for individual activities/tasks involved in the execution of the transaction. Once baselines

are defined for each task, the organisation can keep track of the number of baseline vio-

lations and the magnitude by which these baselines are violated2, and can take corrective

actions (if need be) before progression to an SLA violation (in terms of turnaround time).

Task allocation is one of the key planning exercises that plays a significant role in an

organisation’s quest to meet SLAs and to achieve operational excellence. Employees within

an organisation assume roles based on their skills, proficiency and experience. Since the

execution of tasks requires specific skills, tasks need to be assigned to employees (referred

to as resources) with appropriate skills/proficiency. Two resources possessing the same

skills but having different proficiencies in those skills may take different times to process

a task. In spite of all of these intricacies, most SDOs still resort to manual allocation of

tasks.

Such manual allocation in SDOs is generally performed by a team lead. A team lead

handles the incoming volume of transactions and, depending on the type of transaction

and the tasks that need to be executed to process it, manually allocates the tasks to re-

sources that she/he manages. While doing so, the team lead needs to consider a multitude

2Typically, SLAs are defined such that the penalty for violations variesy based on the magnitude of
violation.



Chapter 1. Introduction 26

of factors such as task complexity, skill requirements, baseline processing times, resource

skills/proficiency, workload, utilisation, fairness, etc. All of these factors need to be manu-

ally processed, making task allocation extremely challenging for team leads and making it

almost impossible to keep in check the factors mentioned above; thus, there is a higher risk

of impact on the KPIs and SLAs. Manual task allocation is further characterised by the

danger of inherent biases that team leads may adopt. Such biases will impact resources,

whose incentive payouts are dependent on the tasks that they process and their produc-

tivity. These factors warrant the design of efficient and automated task allocation schemes

for SDOs to achieve operational excellence via fair task allocation, which involves better

utilisation of resources, improved productivity, reduced costs and improved operational

KPIs, thereby meeting the SLAs.

1.2 Contributions

This section outlines the main contributions of this thesis, and provides references to the

appropriate chapters for each contribution.

1.2.1 Validation of Non-linear Dimensionality Reduction (Chapter 2)

A popular parameter to validate non-linear DR methods like Isomap, LLE and Maximum

Variance Unfolding (MVU) is residual variance (Balasubramanian and Schwartz, 2002b).

In this study, we develop and explore the topological stability of the data before and after

DR. We attempt to calculate the persistence of point cloud data in both high and low

dimensions. We show that PH can be used to validate the non-linear DR of a point cloud

dataset. This method does not perform a nearest neighbour search or calculate residual

variance; thus, calculation time can be independent of the dimensionality of data.

Further, PH homology calculation can provide the optimal number of sample points re-

quired for DR. Several experiments have shown that PH could be a handy tool to determine

the minimum number of sample points for DR for point cloud data. In many tests, residual

variance provides good dimensionality reduction whereas PH provides inferior dimension-

ality reduction.
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One weakness of PH calculation for point cloud data is that although it can handle any

dimensional data, it has a relatively high computation cost if the data set consist of massive

sample points. To improve this, supervised deep learning methods were investigated as

a follow-up study. The improvement in topology detection in Chapter 3 forms the next

significant part of this work.

1.2.2 Topology Detection with Deep Learning (Chapter 3)

Although we used PH techniques for validating the DR technique, we faced another issue

during our research, that is, that PH tools can be computationally costly if there is a

large point cloud dataset. Analysis of a large dataset as a whole with PH is a prolonged

process. To reduce the complexity of PH calculation, we used deep learning methods,

which are very good at object recognition. Several recent studies (Cang and Wei, 2017;

Hofer et al., 2017) have used deep learning techniques with topology properties to predict

bimolecular property and topological signatures. However, (Cang and Wei, 2017) only

used deep learning for a 3-dimensional biological image.

This study developed an approach to PH calculation for 2-dimensional and 3-dimensional

point cloud data with a large number of sample points, reducing memory usage to linear

in the number of data-points (Chapter 3). We also show that the deep learning framework

can predict the topological properties of 2-dimensional and 3-dimensional data sets with

a large point cloud.

For this study, the data set was generated with all kinds of variations that can be topologi-

cally complicated if we want to calculate PH through a traditional tool like Javaplex (Adams

et al., 2014). Full details and results are provided in this Chapter.

1.2.3 Optimization over Manifolds (Chapter 4)

This thesis presents an approximate barrier algorithm for optimisation over the manifold,

with a theoretical basis for lower-bound performance in Euclidean space. The line search

algorithm with barrier method has a single parameter controlling approximation, which

gives a smooth trade-off between the optimal result and searching speed. Comparisons
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with a Matlab solver showed that for near accuracy levels, the approximate optimal point

is very competitive regarding performance. We took the convex hull over the manifold

to perform the starting point calculation. Optimisation over the manifold also provides a

significant advantage over traditional non-convex methods, as this method is represented

directly and in linear space, using data points.

1.2.4 Improving Operational Performance using Meta Heuristic algo-

rithm (Chapter 5)

To obtain a better understanding of high dimensional data, we explored industry financial

data while performing industry work with Xerox Research Centre India. The data was

SDO data with transaction and resource details. SDO provides operations support, sales

services and information technology services like transaction processing, around the clock.

Large volumes of transactions (of the order of a few hundred thousand to millions) are

processed every day, and this is projected to increase further in the coming years. It is

imperative that organisations find ways to optimise their operations to meet the SLAs

catering to the increasing workload. One means to achieve this objective is to explore

ways of increasing the throughput of employees handling the transactions. Task allocation

plays a crucial role in the performance of employees and in the satisfaction of SLAs (e.g.,

quality, turnaround time, etc.).

In Chapter 5, we proposed an algorithm and a method for allocating tasks to employees

in services organisations. Chapter 5 discuss the difficulties of task allocation. Currently,

our meta-heuristics algorithm outperforms the ILP with regard to time complexity when

a large number of tasks and resources are used. Full details and results are given in

Chapter 5.

1.3 Structure of Thesis

Topological analysis of point cloud data or high dimensional data has received a significant

amount of research attention to date. Due to the increasing use of high-resolution images,
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3-dimensional images and high dimensional real-world data, there is an increasing drive

for research and development of faster and more memory efficient data analysis methods.

The utility of topological analysis becomes immediately apparent whenever we think of

DR, learning methods, visualisation and optimisation, in which data resides on very high

dimensional space, and we want to identify the source information. In this case, we try

to explore extreme situations of topological analysis and optimisation. From a technology

perspective, this type of task introduces several complex requirements.



Chapter 2

Validating Non-Linear

Dimensionality Reduction Using

Persistent Homology

During the process of non-linear DR, manifolds represented by point clouds are at risk

of altered topology. We review techniques for quality assessment of manifold learning

and propose the use of PH to evaluate the topological impact of manifold learning by

comparing the Betti numbers of test manifolds before and after DR. We propose a bench-

mark suite of test manifolds based on the Swiss roll dataset with added geometrical and

topological complexity. The experiments demonstrate the effectiveness of the approach by

analysing examples of test manifolds where the embedding failed. Betti numbers based

on PH are also used to select suitable sampling rates for the manifold point clouds, and

to determine optimal values for the nearest neighbour parameter k of selected manifold

learning methods. The results indicate that the more complex the manifold is, the more

sample points and larger values of k are required.

30
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2.1 Quality Assessment of Manifold Learning

Following the emergence of a variety of methods for manifold learning that occurred after

the proposals of Isomap and LLE in 2000 (Roweis and Saul, 2000a; Tenenbaum et al., 2000),

it was recognised that there was a lack of criteria or explanation for how well manifold

learning techniques perform for different data sets, and that additional measures would

be required to assess their performance. Several more recent publications have specifically

addressed the issue of quality assessment of manifold learning (Akkucuk and Carroll,

2006; France and Carroll, 2007; Gracia et al., 2014; Lee et al., 2014; Meng et al., 2011) and

associated data visualisation (Venna et al., 2010). Most of these studies observed that good

visualisations could be obtained from techniques that preserve the local neighbourhood

around each point. It was noted that many studies had no quantitative measure to evaluate

the quality of the outcome of DR, and had to rely on visual inspection alone (Venna et al.,

2010). Of course, this is only possible for manifolds of one, two or three dimensions, and

excludes manifolds that still have four or more dimensions after DR.

Gracia et al. (2014) provided an extensive review of quality assessment measures for DR

techniques published between the years 1962–2012. Using a selection of 11 quality as-

sessment measures, Gracia et al. (2014) provided a methodology that allows different DR

methods to be compared using the concept of preservation of geometry. Their approach

is aimed at helping researchers choose a suitable DR method for a given data set. Their

experiments used 12 real-world data sets for testing. The results indicated that, among all

algorithms tested, Isomap, MVU (Weinberger et al., 2004) and t-SNE (Van der Maaten

and Hinton, 2008) were best at preserving the original characteristics of the data.

It should be acknowledged that many DR methods include random aspects and depend on

parameter settings that can have an impact on an algorithm’s performance (Mokbel et al.,

2013). If the quality of DR methods is measured point wise in local neighbourhoods, this

can help to improve the parameterisation quality measure in the evaluation process (Mok-

bel et al., 2013). A more precise assessment method uses a co-ranking matrix to determine

the deviation of points from their original rank. However, a problem arises when trying to

facilitate a more detailed evaluation, and an overall assessment and comparison of different

visualisations.
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Figure 2.1: A rectangular strip is curled, bent and punched to generate 8 datasets of
different geometric and topological complexity: (a-d) Swiss Roll (SR) with two turns and

1, 3, and 7 holes; (e-h) Heated Swiss Roll (HR) with two turns and 1, 3, and 7 holes.
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Another technique, termed Anisotropic Scaling Independent Measure (ASIM), can effi-

ciently compare the similarity between two configurations of data points under rigid mo-

tion and anisotropic coordinate scaling (Zhang et al., 2012). Based on this technique,

the embedding quality assessment method, termed NIEQA (Zhang et al., 2012), considers

both the local and global topology of a data set to provide an overall assessment. This

method depends on different neighbourhood sizes for local and global assessment.

The co-ranking matrix of Lee and Verleysen (2009) can be used to compare the ranks in the

initial data set and in the data after DR. Rank errors and concepts such as neighbourhood

intrusions and extrusions can be associated with different blocks of the co-ranking matrix,

and can be used as quality assessment criteria for DR. Rank-based criteria have been

extended to scale independent quality measure methods, given that most DR techniques

rely on a scale parameter that distinguishes local from global data properties (Lee and

Verleysen, 2010).

An early quality assessment method that can also provide an estimate of suitable target

dimensionality is residual variance, which was used by Tenenbaum et al. (2000) in associ-

ation with Isomap. Several of the discussed articles noted that one of the most popular

quality assessment methods for DR is the average agreement rate, which compares the k-

neighbourhoods in the high- and the low-dimensional space (Akkucuk and Carroll, 2006;

Lee et al., 2014; Lee and Verleysen, 2009).

The comparison of local neighbourhood structures in many of the discussed quality assess-

ment methods emphasises the need for assessment of the preservation of local geometry

during DR, rather than assessment of the global topology. Lee et al. (2014) even excluded

spectral methods such as Isomap, MVU and LLE from their study as these methods have

difficulty with clustered data and tend to deform.

The present study focused on global topological measures, and not geometrical proper-

ties, in quality assessment, and aimed to complement some of the previously discussed

methods. The topological aspects have rarely been addressed in this context in the exist-

ing literatures. An article on this topic that is very closely related to the present study

and also used PH for the evaluation of DR schemes was undertaken by Rieck and Leitte

(2015). Their analysis framework did not directly refer to Betti numbers but was based
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on comparing persistence diagrams. Rieck and Leitte (2015) had slightly different goals

as compared to the present research, and included several DR techniques; they used both

Swiss roll data and real-world data. The history of quality assessment is given below.

Table 2.1: Quality assessment history

1962 Sheppard Diagram (SD)

1964 Kruskal Stress Measure (S)

1969 Sammon Stress (SS)

1988 Spearman’s Rho (SR)

1992 Topological Product (TPr)

1997 Topological Function (TF)

2000 Residual Variance (RV)

2000 König’s Measure (KM)

2001 Trustworthiness & Continuity (T&C)

2003 Classification error rate

2006 Local Continuity Meta-Criterion (Qk)

2006 Agreement Rate (AR)/

Corrected Agreement Rate (CAR)

2007 Mean Relative Rank

Errors (MRRE)

2009 Procrustes Measure (PM)/Modified

Procrustes Measure (PMC)

2009 Co-ranking Matrix (Q)

2011 Global Measure (QY)

2011 The Relative Error (RE)

2012 Normalization Independent

Embedding Quality Assessment

(NIEQA)

2014-2015 Norm Concentration

(Frobenius norm between the

gram matrices)
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2.2 Experiments

The approach of using PH for topology evaluation during DR can be applied to any

manifold learning method and to manifolds of any dimension. However, some non-linear

DR methods, such as t-SNE (Van der Maaten and Hinton, 2008), focus on disentangling

and visualising data, while other methods try to preserve global topological or geometrical

properties of a connected underlying manifold. Accordingly, the focus of the present study

was on two representatives of the latter set of methods; t-SNE and related methods were

not included.

The experiments employed two of the most well-known manifold learning techniques,

namely, Isomap and LLE, which both use an underlying k-nearest neighbour graph on

the manifold data.

The task was to obtain 2-dimensional embeddings of the Swiss roll and the heated Swiss

roll, and six of their variations of increasing complexity with 1, 3 and 7 holes (Fig. 2.1).

One aim was to demonstrate the effectiveness of using PH for evaluating manifold learn-

ing. This was achieved by comparing evaluations using the common measure of residual

variance (Tenenbaum et al., 2000) with our proposed Betti number analysis. Another aim

was to demonstrate how to use Betti numbers to estimate the minimum number of sample

points required for successful application of DR, and to determine an optimal k-nearest

neighbour parameter k for each case.
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Figure 2.2: (a) Betti numbers of the Swiss Roll data in 3-dimensions dependent on the
number of sample points; (b) Betti numbers of the Heated Swiss Roll data in 3-dimensions
dependent on the number of sample points. Betti number behaviour dependent on the
number of sample points (x-axis) before dimensionality reduction. The results for B0 in
both graphs show that for sample sizes below 500, the point cloud is not yet recognised
as one connected manifold but as a set of many disconnected components. For 1000 or
more sample points, B0 converges to 1 indicating correctly that each manifold consists of
one connected component. The curves for B1 converge correctly to 0, 1, 3 or 7 for the
manifolds with the corresponding number of holes. Each curve represents the average of
the same 40 samples but with a different number of holes. The numerical results indicate

that the B0 and B1 curves converge more slowly the more complex the manifold is.
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2.2.1 Software

The experiments for manifold learning either used the original software (in Matlab) as

provided by the authors of Isomap (Tenenbaum et al., 2000) and LLE (Roweis and Saul,

2000a) or their implementation in the toolbox provided by van der Maaten et al. (2009).

Both methods use a k-nearest neighbour graph and a suitable parameter k had to be

selected upfront for each method and manifold.

The Betti numbers for the example manifolds were calculated before and after DR using the

Javaplex software package for PH, as described by Tausz et al. (2014b). The computational

demand of calculating the simplicial complexes and Betti numbers can be very high and

investigations are currently underway to achieve efficient computations (Otter et al., 2017).

Javaplex is well-documented and suitable for smaller data sets, as used in the present

study. It offers several options to calculate PH and then generates barcode diagrams and

associated Betti numbers as output (Tausz et al., 2014b). We chose the Vietoris-Rips

option in Javaplex to calculate the PH. A critical parameter that requires calibration is

the ‘maximum filtration value’ R. Tausz (2012) recommended to start with a small value

and then scale it up gradually in a series of tests, while observing the barcode diagrams,

until essential persistence bars can be identified. This process was followed for each data

set in the present study in a series of pilot experiments. Finally, we settled on R = 3.5 for

the data sets before DR and R = 4.7 for the embedded point clouds after DR.

2.2.2 Data

This study used eight synthetic datasets of different geometrical and topological complexity

(Fig. 2.1).

The ‘Swiss Roll’ dataset (SR) (Fig. 2.1a) is a two-dimensional strip that is curled as

a spiral embedded in R3 (Tenenbaum et al., 2000; van der Maaten et al., 2009). Let

x = (x1, x2) ∈ [−1,+1]2 be uniformly distributed. Then a parameter representation of SR
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where each coordinate of the manifold depends on a single latent variable is given by:


(1 + 2π

√
x1) cos(2π

√
x1)

(1 + 2π
√
x1) sin(2π

√
x1)

20x2

 (2.1)

The ‘Heated Swiss Roll’ (HR) (Fig. 2.1e) is a variation of SR with added curvature in

the z-direction (Lee and Verleysen, 2007). A parameter representation where the first two

coordinates depend on both latent variables x1 and x2 is given by:


(1 + (2x2 − 1)2)2π

√
x1 cos(2π

√
x1)

(1 + (2x2 − 1)2)2π
√
x1 sin(2π

√
x1)

20x2

 (2.2)

To scale the topological complexity of the data, we used an additional three variations of

the SR data inspired by the so called ‘Japanese flag manifold’; Fig. 2.1a-2.1h show SR and

HR with 0, 1, 3, and 7 holes, respectively.
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Figure 2.3: (a) B1 for the embedded SR with different numbers of holes; (b) B1 for
the embedded HR with different numbers of holes. Betti number behaviour dependent
on the number of sample points after dimensionality reduction with 7-Isomap. The plots
show B1 is dependent on the number of sample points for each of the eight data sets.
Each curve is the average of B1 for 18 embedded manifolds. With increasing numbers of
sample points, B1 for most manifolds converged to the correct value. An exception is the
case of HR with 7 holes in (b), where most embeddings failed and the mean curve ended

up lower than 7.
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2.2.3 Analysis

The impact that DR can have on the manifolds is seen in Fig. 2.5 and 2.6; these figures

show successful and unsuccessful Isomap embeddings. The following experiments aim to

quantify this visual observation. They compare the topological properties of our data sets

before and after DR.

2.2.4 Topological Analysis Before Dimensionality Reduction

Fig. 2.2 shows (on the y-axes) Betti numbers B0 and B1 calculated for the eight data

sets of Fig. 2.1 before application of manifold learning. Each curve shows the mean for

40 random samples. None of the considered manifolds had 3-dimensional cavities, and

therefore, B2 was always 0 and is not displayed. The results in Fig. 2.2 show that B0

(= number of connected components) quickly converges to 1. B0 converges faster for SR

than for the more complex HR. The count of circular holes, B1, converges to the expected

values of 0, 1, 3 and 7 after about 1700 sample points for SR and after 2100 sample points

for HR. These results show that the convergence rates can be slower for geometrically and

topologically more complex manifolds.
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Figure 2.4: (a)Isomap; (b) Isomap; (c) LLE. The lines in the graphs show the lower
bound on the sample size (ordinate) above which B1 converges correctly after application
of manifold learning. The experiments were run for several k (abscissa). The graphs show
that more sample points are required if the manifold is more complex. Due to the very

small standard deviation, the error bars were not visualised.
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2.2.5 Analysis of Manifold Data after Dimensionality Reduction

In order to detect and maintain the topology type of manifolds represented by point cloud

data before and after DR, a certain amount of data is required. If there are not enough

data points, the manifold cannot be recognised and its topology cannot be calculated

correctly. Fig. 2.3 shows Betti number B1 (y-axis) for the 2-dimensional embeddings of

our test manifolds with regard to sample size (x-axis). All embeddings were conducted

using Isomap with k = 7. Isomap can be very unstable, and to reduce the impact of

outliers, each curve shows the average of the 18 best runs out of 30. Results obtained for

LLE were similar to those with Isomap and are therefore not displayed.

After DR, B1 behaves similarly for seven different versions of SR and converges to the

expected values when the sample size comes close to 3000. Most of the displayed curves

go up first because, for low sample sizes, the manifold has many holes. The green-dotted

curve in Fig. 2.3a behaves slightly differently because it represents SR with 7 holes, and

for low sample sizes, the 7 holes seem to merge into one big hole. Most embeddings of HR

with 7 holes (Fig. 2.1h) behaves slightly different because it represents HR with 7 holes,

and for low sample sizes, the 7 holes seem to merge into one big hole. Most embeddings

of HR with 7 holes (Fig. 2.3b).

We also calculated the residual variance for all embeddings with Isomap using the tool that

comes with the Isomap software. The residual variance is calculated using 1−R2(DM , DL)

where R is the standard linear correlation coefficient taken over all entries of the two dis-

tance matrices, DM are the estimated geodesic distances on the manifold before embedding

and DL are the Euclidean distances after embedding (Tenenbaum et al., 2000). The resid-

ual variance is a useful measure to determine in which dimension to embed a manifold.

In our experiments, we aimed at determine if an embedding is successful or not from a

topological point of view. The following examples highlight the strength of our proposed

topological approach in comparison to the residual variance.
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Figure 2.5: Two-dimensional Isomap embeddings (with k = 7) of SR with 3 holes; (a)
a 3100 point Swiss Roll sample that was successfully embedded from 3D into 2D; (b) a
3100 point Swiss Roll sample with 3 holes where a 4th hole occurred on the left during
embedding; (c) a 2100 point Swiss Roll sample with 3 holes where the hole on the right

was ripped open during embedding.
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(a) Successful embedding of a 3100 point sample
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Figure 2.6: Two-dimensional Isomap embeddings (with k = 7) of a Swiss Roll with 7
holes; (a) a 3100 point sample that was successfully embedded from 3D into 2D; (b) a
1000 point sample that was successfully embedded; (c) a 3100 point sample where the 5th

and 6th hole were merged during embedding.

Example 1 Fig. 2.5a shows a successful embedding of SR with 3 holes represented by

a point cloud of 3100 sample points. We repeated this embedding with Isomap (k = 7)
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30 times for different draws of the 3100 sample points. The mean residual variance of

this experiment was 1.32 · 10−3 (std 0.33 · 10−3). The mean Betti number B1 for this

experiment was 3.2 (std 0.41). Interestingly, the example in Fig. 2.5a had B1 = 3 as

expected but a relatively high residual variance of 2.28·10−3, while the example in Fig. 2.5b

had B1 = 4 and a relatively low residual variance of 0.89 · 10−3. This indicates that the

topological measure can detect the accidentally occurring fourth hole in Fig. 2.5b while

the residual variance cannot detect it. The values for the residual variance indicate, in

this case misleadingly, that the embedding in Fig. 2.5b would be of better quality than

the one in Fig. 2.5a.

Example 2 When reducing the sample size of SR with 3 holes to 2100 points, holes

can break open, seen on the right side in the example in Fig. 2.5c. The residual variance

of this example was 0.0021 and close to the mean of the batch of 30 samples and did not

indicate that anything was wrong with the embedding. However, the assessment using

Betti numbers returned B1 = 2 as a warning that one hole was lost.

Example 3 Fig. 2.6a and 2.6b show that successful embeddings of SR with 7 holes are

possible for samples of 3100 points but also for 1000 points (Fig. 2.6b). Both examples

resulted in B1 = 7. Fig. 2.6c had 3100 sample points and resulted in B1 = 6 because

two holes seemed to merge into one hole. For all three examples in Fig. 2.6, the residual

variance was close to the mean of the batch and did not indicate any topological differences

in the outcome.

2.2.6 Topological Analysis of the Manifold Data after Dimensionality

Reduction: Dependency of B1 Convergence on Sample Size and

k-Nearest Neighbour Parameter

Fig. 2.4 shows how the final convergence of B1 was affected by different k in Isomap and

LLE. For each experiment an average of 30 runs was used. The standard deviations were

relatively high in the range 350-550. The graphs indicate how the different values for k

(x-axis) relate to different sample sizes (y-axis) at the point of convergence of B1. The
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ideal neighbourhood parameter k for Isomap on the test manifolds appears to be in the

range 14-16. For LLE k = 6 for SR and SR with one hole, and k = 8 or 9 for SR with 3

or 7 holes (Fig. 2.4c). All graphs confirm that test surfaces with more holes require higher

sample sizes.

2.3 Chapter Summary

This study described a validation approach for non-linear DR techniques using PH. In

a series of pilot experiments, the topology of point cloud data before and after DR was

compared using the calculation of PH Betti numbers. As this only uses the data before and

after embedding, it can, in principle, be applied to any DR method. The study focused on

Isomap and LLE; that is, two established manifold learning methods that use a k-nearest

neighbour graph and try to respect the global topology of the data.

Data was sampled from different versions of increasing complexity of the Swiss roll. The

experiments showed that the more complex the manifold is in terms of curvature or topol-

ogy, the more sample points are required to calculate its topology. It was demonstrated

that the proposed method can help to provide a lower bound for the number of sample

points required to allow correct manifold learning (Fig. 2.4).

We identified examples where the proposed method could detect a topological change

caused by the embedding, but the traditional measure of residual variance could not.

Another contribution was the description of a method that helps to decide on a suitable

k for Isomap and LLE.

The experiments were restricted to variations of the Swiss Roll, but could be extended in

future research to real-world data sets, and could be applied to manifolds of any dimension.

A general issue for manifold learning or associated quality evaluations occurs when the

distribution of sample points is highly heterogeneous and does not capture the topological

or geometrical characteristics of the underlying manifold. If, for example, certain areas

of an image manifold are missing or cannot be captured in the data, then even a large

increase in the number of sample points cannot fix the problem and the global topology
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of the manifold may remain unknown. Therefore, in the present study, we assumed that

the sample points of our simulated data were approximately evenly distributed.

A limitation of the presented approach is that PH cannot detect if an embedding of a

manifold causes rips in the edge of a manifold, nor can it detect geometrical distortions

that do not change the connectivity or topology type of the manifold.

In summary, with its ability to detect topological changes in any dimension, the pro-

posed approach complements the methods reviewed in Section 2.1 and could be used in

conjunction with them to achieve a more comprehensive quality assessment of manifold

learning. Using combinations of the proposed and the reviewed approaches to evaluate

embeddings of topologically complex high-dimensional real-world data is a task for future

investigations.



Chapter 3

Topology Calculation for

3-dimensional Data

Topology and its various benefits are well understood within the context of 2-dimensional

(2D) data sets. However, requirements in 3-dimensional (3D) applications have yet to be

explored. It is clear that, with the rapid increase in the amount of data produced, the

availability of efficient tools to analyse these data is of great importance. Due to its ability

to extract essential topological features of the parsed data, PH is becoming a widely-used

method. PH was introduced by Edelsbrunner et al. (2000) and has drawn much attention

as it robustly extracts the topological structure of data. To study these data quantitatively

requires efficient algorithms for processing large 3D images and for extracting topological

and geometrical measures. After successful calculation of PH for a manifold, we wanted to

apply our methods to a 3D real-world data set. One of the most fundamental descriptions

of a structure is via homology: the mathematical characterisation of connectivity, including

connected components, independent loops and enclosed voids. An essential ingredient to

use homology in the study of experimental and computational data is to build a filtration

(a nested sequence of cell-complexes) that captures the topology of the data concerning a

parameter, usually a length-scale, that dictates the order in which complexes are added.

Topological features (such as a hole through an object) are born at some parameter value

and are later merged or filled in at a larger value. Features that are created and destroyed

almost simultaneously are considered noise. Features that persist over longer parameter

48
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ranges are deemed to be more critical. While algorithms with good practical running

times have been proposed (Chen and Kerber, 2011), exact computation of persistence for

sizeable 3D stack image data remains a challenge due to the massive memory requirements.

The under usage of PH in real world applications is because it is very computationally

costly. The general PH algorithm (Edelsbrunner and Harer, 2010) takes O(n3) even for

small sized data (e.g., 64× 64× 64). In addition to the higher complexity, there are three

further issues: (1) the memory consumption of the currently available implementations,

like Javaplex and Ripser1, is very large even for a small point cloud; (2) the focus of several

applications is on data of higher dimensions, e.g., 4D, 5D or higher; and (3) not only does

the data lie in 4-dimensional, 5-dimensional or higher dimensions, the data are also point

cloud data, which makes the computation even more complex.

In the previous chapter, we used Javaplex and Ripser to calculate the PH of the SR and

HR datasets. We also described the optimal sample points required for the dataset in

order to obtain stable topology. In the case of 3D or higher real-world data, the existing

algorithm does not scale well with the increase in sample points, thus introducing larger

computational times and memory inefficiency. In a later section, we will provide the

detailed analysis of our experiments.

The contributions of the present study are as follows:

• We attempted to calculate Betti numbers in PH to evaluate their impact on the

topology type of the manifold that underlies a given set of points.

• We used a 3D stack image and calculated PH with deep learning.

• We described the full analysis report for Javaplex with the computation cost.

• We were unable to complete the whole experiment because of the computational

cost; this study attempted to use a Convolutional neural network to obtain the PH

in a supervised manner.

1https://github.com/Ripser/ripser
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3.1 2D Image Slices to Point Cloud

Images can be representative of complex materials. Processing of an image can be per-

formed quickly and in exquisite detail. By definition, image processing is a field that is

concerned with the computation and information contained in images. This chapter aims

to analyse the images of complex material through PH, which can build a bridge between

algebraic topology and applications. However, sometimes, the images can be of high reso-

lution, and this can cause a problem for the computation of PH. We aimed to calculate the

correct PH of the whole 3D data. The data we have used to calculate PH was 3D complex

material data from Department of Mechanical Engineering, The University of Newcastle.

The datasets were the Micro-Computed tomography (MCT) image slice of complex mate-

rial. This type of complex materials is called syntactic foams. According to Taherishargh

et al. (2017), researchers are working to produce these materials cost-effectively. If we

can explore the topology of these kinds of material, it would be easier to produce these

materials. This motivates us to use this data set.

These data set are consist of image slices. The data used was slices of one cylinder of

complex material. These are often called stack images. Each image represents a slice of

complex material. Each of the slice images is of 744 × 684 pixels. To analyse this size of

an image through Javaplex and Ripser takes a substantial amount of time and storage.

That’s why these images must be converted to point cloud.

To convert each slice image to point cloud data, we first must convert each image into a

binary image with a threshold of 0.25.
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Figure 3.1: (a) Original Image; (b) after binarisation, black pixels denote the holes in
the image and white pixels are the complex material

Fig. 3.1 shows only a sub-image from the middle of the original image 250 × 250. Then,

we find the distribution of the pixels where the pixel value equals to 1, and begin sampling

according to the distribution. After sampling, the image becomes a point cloud dataset

with coordinates of the data points. We used the random sampling technique to obtain

the point cloud from the distribution. After we converted the image to the respective

point cloud data set, we applied Javaplex and Ripser to obtain the PH. As we want to

apply our previous methods explained in Chapter 2 and know about the minimum sample

points required to achieve correct topology, we have showcased the two different version of
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point cloud to visualise the distortion of the topology with the number of sample points.

Fig. 3.2 shows the point cloud of the slice image with 4000 and 40000 sample points.
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Figure 3.2: Slice image converted to point cloud (a) Original slice image, (b) 4000
sample points and, (c) 40000 sample points.
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After we converted the image to the respective point cloud data set, we applied Javaplex

and Ripser to obtain the PH.

3.1.1 2D Slices to 3D Data

2D slices of point cloud data are used to generate 3D data of complex material. We put

every point cloud slice vertically to each other, at a distance of 1 cm. We then tried to feed

the 3D point cloud data to Javaplex to obtain the topological analysis for the given data

set. We first started with the 4000 sample points per slice. Each slice has been converted

into 4000×2 matrix where it has the x and y coordinates of 4000 sample points. Similarly

all the 775 slices are converted to similar matrices. When we merged all the 775 slices of

size 4000 × 2, the point cloud data became of size 4000 × 2 × 775. We have used 4000

sample points for each slice of the cylinder. Javaplex required more than 500 GB of RAM

to compute the PH of the 3D data. It is hard to visualise 3D data from the 2D slices

because: 1) all the 2D images are of the same dimension; hence, the 3D volume can hold

all of them in a rectangular cube or cylindrical shape; 2) the majority of the pixels in each

of the 2D images has a 3D spatial relationship, and it is difficult to visualise if each of the

2D images is of some random distribution.

Fig. 3.3 shows the point cloud data generated from the complex material. Part (c) of

Fig. 3.3 shows the actual complex material in 3D. Part (b) shows the point cloud generated

from the complex material. Part (a) is the top view of a slice image after converting it to

a point cloud.
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Figure 3.3: (a) Original slice point cloud with (b) 4000× 2× 775 point cloud data and
(c) 3D view of the original data.
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3.1.2 Experimental Set-up

One aim was to demonstrate the effectiveness of using PH for evaluating the use of Betti

numbers to estimate the minimum number of sample points required for 3D complex

material. This resulted in successful calculation of the minimal volume that must be con-

sidered when determining material specific topological characteristics. The computational

demands of calculating simplicial complexes and Betti numbers can be very high, and re-

searchers are currently investigating ways to achieve efficient computations within a suit-

able time complexity (Otter et al., 2017). Javaplex offers several options to calculate the

PH and then generates barcode diagrams and associated Betti numbers as output (Adams

et al., 2014). We chose the VietorisRips option in Javaplex to compute the PH. As we

know from Chapter 2, one of the critical parameters that requires calibration during the

experiments is the ‘maximum filtration value’ R. In the case of SR, we can easily test and

estimate the R value, which has been explained in Chapter 2. However, for 3D data, the

estimation of the R value with pilot experiments is very time-consuming. However, we

used the inbuilt functions of Javaplex, ‘createRandomSelector’ and ‘landmark selector’, to

determine the R for the 3D data; eventually, we settled on R ≈ 9000 for the data set.

3.2 Analysis

We started our experiment with 3D point cloud data of size 4000 × 3. From Fig. 3.4, it

can be observed that B0 in the graph indicates that for sample sizes below 500, the point

cloud is not yet recognised as one connected manifold, but as a set of many disconnected

components. For 1000 or more sample points, B0 converges to 1 indicating correctly that

the 3D data consists of one connected component. However, the curves for B1 do not

indicate successful convergence for the manifolds with the corresponding number of holes.

Each curve represents the average of the same 10 3D data samples, but with different

examples. The numerical results indicate that the B0 and B1 curves converge slower the

more complex manifold is. Fig. 3.5 shows the bar code diagram for the same data obtained

from Javaplex.
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Figure 3.4: Betti number behaviour dependent on the number of sample points (x-axis).
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Figure 3.5: Bar code diagram for 3D data (x-axis).
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However, these experiments required more physical memory with increasing numbers of

sample points. This phenomenon occurs due to the increasing number of simplexes as the

number of sample points increases. For 800-900 sample points, Javaplex was running for

18 hours and using 48 GB RAM, and the number of simplexes for 800 sample points with

3D data was around ≈ 335485, which grows exponentially as the number of sample points

increases. From Fig. 3.6, we can clearly see as we increase the sample points, the number

of simplices increase exponentially. Results are obtained experimentally from Javaplex.
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Figure 3.6: (a) Number of simplexes, (b) time to calculate the homology, and (c)
physical memory required for PH calculation for 3D data set. The results are shown for
up to 1700 sample points, after which computation of PH failed due to the huge memory

requirement.

From Fig. 3.6, it can be seen that, requirements in memory and time increase rapidly with

the number of sample points. For example, for 300 sample points, the number of simplices

were 10000, and for 600 sample points, the numbers of simplices became 90000. Javaplex
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failed because it was requesting more than 128 GB of RAM after running for almost 139

hours. We then increased the Java-heap size to 400 GB and RAM requirement to 500

GB to rerun the experiment with a 400 hour limit. However, this was only able to give a

result for up to 1700 sample points. Processing becomes stranded up to 400 hours. From

Fig. 3.6, it can be seen that for successful PH calculation for 3D data, we require ≈ 166

hours and ≈ 218 GB of RAM. However, we were using only a low-resolution stack image

data of 600 × 600 per slice. How can we solve this problem with less computation cost?

How can we detect the holes or Betti numbers for 3D data?

3.3 Deep Learning for Topological Analysis of Data

Although deep learning (DL) techniques had great success in computer vision and ma-

chine intelligence, their application to 3D data sets has been unexplored under topolog-

ical complexity. Recent studies (Cang and Wei, 2017; Hofer et al., 2017) have used DL

techniques with topology properties to predict bimolecular properties and topological sig-

natures. However, (Cang and Wei, 2017) only used DL for 3D biological data. There is

some recent literature describing the ability to ‘vectorise’ the space of the barcode, where

it can then be fed to standard DL techniques (Adcock et al., 2013). Moreover, Adams

et al. (2017) converted a persistence diagram to a ‘persistence image’, which can be later

vectorised for use with various learning techniques. Later, Hofer et al. (2017) used a persis-

tence diagram to compute parametrised projection, which can be used in DL techniques.

However, all of these approaches are applicable for 2D data. Can we use 3D point cloud

to understand topological signatures? To investigate this, we could simply generate (lots

of) simulated data and test appropriate deep nets in a supervised manner.

In this chapter, we explore deep learning architecture capable of reasoning the topological

structure of a data set. The 3D voxel grids or collection of images renders data unnecessary

voluminous and causes issues. Point cloud data are simple and unified structures that

avoid the combinatorial irregularities and complexities of meshes, and thus are easier

to learn from. To get uniform results from convolutional architecture, most researchers

typically transform the point cloud to collection of images before feeding them to deep net
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architecture. However, complex material data can be more voluminous and thus we tried

to convert the images to the point cloud data.

3.3.1 Topological Data Analysis for 2D Using Deep Nets

Instead of using a topological signature as data, we used the images as input data to

a deep neural network to detect topology of the point cloud. For example, Hofer et al.

(2017) used a persistent diagram as a feature after vectorisation. Instead of doing that,

we created 2D point cloud data with various holes in it. We then converted the 2D point

cloud to an image as input data for the Convolutional Neural Network (CNN). Each image

was labelled with B0 and B1, as for 2D, B0 and B1 are essential for topological analysis.

This technique has been used for all of the 2D point clouds in the current study. As a first

step in our DL experiment, we create the point cloud data set by:

2(x1)

2(x2)

 (3.1)

In the Eq. 3.1 we take x = (x1, x2) ∈ [a, b] be randomly distributed. In all of our experi-

ments, we took a = 0 and b = 8. Using Eq. 3.1, the point cloud data set is generated with

any number of sample points (1000, 2000, .., 4000) using the distribution [a, b]. Then, we

insert the various topological features to the point cloud. Below we have explained the

algorithm to insert various 1-dimensional holes.
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Algorithm 1 Topological Structure

Input: Point cloud coords2, no of holes n.

Pick one point from the point cloud randomly as centre of hole c.

Initialize µ.

for i = 1 to n do

Pick one point from the point cloud as centre of hole c.

If c is first centre and distance from image margin <= 2

Add to the list of centre of holes centers.

centers← c.

Else

Check for other points with distance as we do not want to intersect.

Take random radius between r = [1, 2].

repeat

Calculate the distance from c ∈ centers.

If disc < r

Remove the point from the coords2.

until centers = empty

end for

With the help of Algorithm 1, we generated many point clouds with various numbers of

holes, positions and radius. Then we saved them as tiff images.

Figure 3.7: (a)7 holes, (b) 4 holes, (c) 7 holes with different positions



Chapter 3. Topology Calculation for 3Dimensional Data 64

Figure 3.8: (a) 6 holes; (b) 7 holes; (c) 6 holes with different positions and variable sizes

Fig. 3.7 shows a sample of the first set of input data which was used for training in

the CNN. Each image data has been labelled regarding B0 and B1. For example, for

Fig. 3.7(a), B0 = 1 and B1 = 7. We generated 20000 images for this category and tried to

predict the Betti numbers using a CNN. The results showed that CNN can predict Betti

numbers with 100% accuracy. To increase the complexity of our data, we introduced more

complex structures, like islands, into our 2D data set. The idea behind this was to ensure

the network can not only detect the object but also understand the topological structure

of the data. This study attempted to make the B0 and B1 values variable for each of

the images in order to make learning complex for the CNN. Fig. 3.8 shows the data with

variable size holes.

Figure 3.9: Train and Validation loss curves for 2D stack images for 15 epochs (x-axis)

3.3.2 Model

Although the full network is shown in Fig. 3.10, the essential architectural choices are

the input layer and box size, which depend on the image size. We have a three stage
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convolutional network to work with slices of images. The first layer consists of a 2D

convolutional layer with 32 filters, each sized (5,5). This is followed by a max-pool 2D

layer with pooling size of (2,2). The same configuration is then used again for another

three 2D convolutional layers with 64, 128 and 256 filters, respectively. The last stage is

a standard two-layer fully connected neural network with 1024 units and 20% drop out.

This is a simple approach to capture the hole count among the filtration directions. We

used cross-entropy loss to train the network for 15 epochs for the 2D data.

Figure 3.10: Example of basic network architecture with double convolutional layer.
Four convolutional layers (Conv1, Conv2, Conv3, Conv4), one max pooling layer, a fully
connected layer, and lastly, a fully dense layer, where a final softmax is performed. Cross

entropy loss is used and trained with Tensorflow with Adam Optimiser

The current CNN model follows the Fig. 3.10 architecture. The model used Conv1, Conv2,

Conv3 and Conv4, respectively. From the picture, we can observe that the predicted output

approximates the pattern of the ground truth image well.

3.3.3 Result for 2D Images

A summary of the experimental results on the test set can be seen in Fig. 3.9. Models

with 32, 64, 128 and 256 filters outperformed the models with 15 filters. The best model

had four layers, 32, 64, 128 and 256 filters, and a 1024 hidden dimension in the fully

connected layers. We have used ReLU function for each neuron activation. According to
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Krizhevsky et al. (2012), ReLU function f(x) = max(0, x), train several times faster in

convolutional neural network. In our experiment, the ReLU activation function performed

the best and was used for all other experiments. The success of 2D convolutional neural

networks on this dataset verifies the assertion stated earlier, that the model is robust to

rotation and noise. The best architecture can beat the best baseline model by an accuracy

of 100%. However, the experiments showed that for the same hole size dataset, CNN can

easily detect Betti numbers which are very trivial. That is why we introduced the variable

hole size in the data set, which can be difficult for the neural network. Fig. 3.8 shows the

data set with variable hole sizes. The best mode’s rotational invariance is seen in Fig. 3.9.

Table 3.1 shows the final result with the 2D data sets.

Table 3.1: Convolutional Neural Network accuracy for 2D data

Image Size Sample Points accuracy

100×100 2000 60.4%

250×250 2000 77.8%

250×250 4000 81.9%

250×250 8000 88.9%

600×600 4000 91.4%

600×600 8000 94.7%

600×600 10000 99.7%

3.3.4 Checking B1

Although the previous 2D CNN model gave good accuracy with simple holes in the data

set, a neural network model cannot provide understanding of the topology of the data. To

further explore this, we created various forms of data, with various numbers of holes and

islands, to defer the B0 and B1 numbers. Algorithm 2 explains how we put islands into

the manifold data set.

With the help of Algorithm 2, we generated a different type of data set, which can be

topologically disconnected.
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Algorithm 2 Topological Structure with Islands

Input: Point cloud coords2, no of holes n.
Pick one point from the point cloud randomly as centre of hole c.
Initialize µ.
for i = 1 to n do

Pick one point from the point cloud as centre of hole c.
If c is first centre and distance from image margin <= 2
Add to the list of centre of holes centers.
centers← c.
island ← Choose randomly from centers.
Else
Check for other points with distance as we do not want to intersect.
Take random radius between r = [1, 2].
Take inside radius for islands between r1 = [1, 2].
repeat

Calculate the distance from c ∈ centers.
If disc < r
Remove the point from the coords2.

until centers− islands = empty
repeat

If disc < randdisc > r1.
Remove the point from the coords2.

until islands = empty
end for

From Fig. 3.11 we can see that, not only have we have changed the number of holes, but

we have also changed the number of components in the data set. For example, Fig. 3.11(a)

and (d) has the same number holes. However, their B0 is two and five, respectively, as

they have a different number of islands. We have used the same network architecture for

the island data sets. Table 3.2 shows the summary of the results obtained from the island

data sets.



Chapter 3. Topology Calculation for 3Dimensional Data 68

Figure 3.11: (a)4 holes and 1 island, (b) 5 holes and 3 islands, (c) 5 holes and 1 island,
(d) 4 islands

Table 3.2: Convolutional Neural Network accuracy for 2D island data

Image Size Sample Points accuracy

100×100 2000 59.4%

250×250 2000 74.8%

250×250 4000 79.9%

250×250 8000 84.9%

600×600 4000 88.8%

600×600 8000 91.4%

600×600 10000 98.9%
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3.4 3D Data

The primary objective of this study was to represent the difficulties encountered if we

consider 3D point cloud data for topology detection. Previous analysis has shown that

there are very high computational demands when attempting to detect correct topology of

a data set with a high number of sample points. Experiments on retinal images have been

carried out on the DRIVE (Staal et al., 2004) dataset, which includes 40 eye fundus images

and contains manual segmentation of the blood vessels by expert annotators. Much recent

research has shown that network topology can be detected using CNN (Ventura et al.,

2017). However, only 2D image data has been used to detect path level topology in the

Massachusetts Roads dataset. In our study, we want to detect topology of geometrical

shapes or manifolds. To understand the PH of a 3D point cloud data set, we have syn-

thetically generated manifolds with different shapes and different sizes of holes inside the

manifold, in order to vary B1 and B2.



Chapter 3. Topology Calculation for 3Dimensional Data 70

Figure 3.12: (a) 3D manifold with only random bubbles; (b) 3D manifold with cylinder
and torus.
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Figure 3.13: 3D manifold with cylinder, torus and reshaped sphere

Fig. 3.12(a), 3.12(b) and 3.13 show the different 3D data generated with our algorithm.

The data were generated randomly with a hollow sphere, tunnels and a combination of

two tunnels and a reshaped sphere. The idea behind reshaping a sphere is to force the

network to understand the topology rather than the object. Then, every data sets was

labelled with B0, B1 and B2 numbers.

3.5 Experimental Protocol

Fig. 3.14 illustrates the network architecture used for 3D object topology detection in our

study. Note that the 3D point cloud data share one input layer. As we used 3D point

cloud data, we had three coordinates and converted the point cloud to 100 × 100 × 100

voxel data. We used 1000000 total sample points to convert the point cloud to voxel data.

The convolution operation operates with kernels of size 100× 100× 100 and a stride of 2.
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We used 3D CNN for our experiment. Max-pooling operates along the filter dimension.

We used cross-entropy loss to train the network with Adam optimiser and a mini-batch

size of 2 for 300 epochs. Every 20th epoch, the learning rate (initially set to 0.001) was

halved.

Figure 3.14: Example of the basic network architecture with double 3D convolutional
layer. Four 3D convolutional layers, one max pooling layer, a fully connected layer and
finally, a fully dense layer, where a final softmax is performed. Cross entropy loss was

used and training was performed with Tensorflow with Adam optimiser.

Table 3.3: Convolutional Neural Network accuracy for 3D

Image Size Sample Points Accuracy

10×10×10 1000 29.4%

20×20×20 8000 31.8%

30×30×30 27000 47.6%

50×50×50 125000 74.9%

80×80×80 900000 88.8%

100×100×100 1000000 94.4%
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3.5.1 Extension of the Model for 3D Image Data

The 3D convolutional neural network architectures can easily extract the features from

volumetric images of the 3D MNIST data set (Irvin, 2017). These models can be robust and

can be used for any perturbed data set. We attempted to implement the 3D convolutional

model to recognise the number of holes present in the 3D image data.

3.5.2 Pre-processing of the Data

Each image was manually annotated for each hole present in the image with the help of

a Hough transform based on the gradient field. The images were given the range of the

‘sample radius’ to detect all the holes. All points within the sample radius of a hole are

sampled as a positive sample. An equal number of negative samples are randomly sampled

outside the hole radius. A convolutional neural network is trained using the hole centres

and negative samples. From Fig. 3.15 it can be seen that positive samples were correctly

generated along with negative samples.
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Negative samples
Positive samples

Figure 3.15: (a) Original image; (b) image with holes in the centres; (c) image with
negative samples (red) and positive samples (green).
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The following data was used as input for the CNN model for 3D. We obtained 70% accuracy

using CNN when compared with the deterministic results of Javaplex. For both the cases

we have used 2000 sample points. The synthetically generated 3D data sets were labelled

individually by hands as Javaplex was not able process this data due to memory limitation.

3.6 Chapter Summary

This study has presented an approach towards learning topological properties of point

cloud data. Our particular realisation of this idea, i.e., as an input layer to deep neural

networks, not only enables us to learn the topology of point cloud data, but also to use

this as additional (and potentially complementary) inputs to existing deep architectures.

However, one drawback of the proposed approach is the understanding of PH beyond

three dimensions; in fact, other strategies might be possible and better suited in certain

situations. In summary, we argue that our experiments show substantial evidence that

topological features of data can be beneficial in many learning tasks of random point cloud

data, but do not necessarily replace existing methods.
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Algorithm 3 3D Topological Structure

Input: Point cloud coords2, no of holes n.
Pick one point from the point cloud randomly as centre of hole c.
Initialize µ.
for i = 1 to n do Include 3D hole.

Pick one point from the point cloud as centre of hole c.
If c is first centre and distance from image margin <= 2
Add to the list of centre of holes centers.
centers← c.
Else
Check for other points with distance as we don’t want to intersect.

end for
for j = 1 to n do

Choose a random number between a 1 to 5.
switch a do

case 1 Include Torus object.
Calculate the distance from c ∈ centers.
If disc < r
Remove the point from the coords2.

case 2
Calculate the distance from c ∈ centers.
If disc < r
Remove the point from the coords2.
Take rc = r/.5 as cylinder radius and h = r as height.
Put a cylinder at the centre c.
Include all the points inside the cylinder again to coords2.

case 3 Include 2-hole Torus
Calculate the distance from c ∈ centers.
If disc < r
Remove the point from the coords2.
Take rc = r/.5 as cylinder radius and h = r as height.
Put two cylinder at the centres c and c+ 0.5.
Include all the points inside the cylinder again to coords2.

case 4 Include crossed cylinder
Calculate the distance from c ∈ centers.
If disc < r
Remove the point from the coords2.
Take rc = r/.5 as cylinder radius and h = r as height.
Put two cylinder at the centres c
Rotate one cylinder so that they crossed each other.
Include all the points inside the cylinder again to coords2.

case 5 Include Parallel cylinder
Calculate the distance from c ∈ centers.
If disc < r
Remove the point from the coords2.
Take rc = r/.5 as cylinder radius and h = r as height.
Put two cylinder at the centres c and c+ 0.5.
Rotate one cylinder so that they crossed each other.
Include all the points inside the cylinder again to coords2.

end for



Chapter 4

A Barrier Algorithm Approach for

Optimisation Problems Over

Non-Linear Manifolds

Optimisation over manifolds is a natural generalisation of smooth optimisation in Rn. We

take a new look at the optimisation techniques on manifolds. This chapter describes both

the barrier method and the Newton backtracking method over manifolds to solve optimi-

sation problems. There are many methods available to solve minimisation problems on

Riemannian manifolds (Ji, 2007). These methods include the steepest gradient method,

conjugate gradient method, Newton method and self-concordant functions. These meth-

ods can be used to solve problems over Riemannian manifolds with some modification.

There are many past examples where the computation of these methods is not straight-

forward. For example, minimisation of a function over a sphere, where geodesic gradient

and transformation are computed by non-linear functions and vector calculations. We im-

plement some self-concordant functions, like the barrier method over manifolds, to solve

specific optimisation problems.

In the case of a discrete optimisation problem, we need to choose the best solution from a

set of points. This also includes the enumeration of the finite set of all feasible solutions,

and comparison to obtain an optimal solution; this is rarely practical. However, discrete

77
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problems can be solved using linear and non-linear programming methods. If the solution

does not belong to the original data set, the approach rounds it to the closest solution in

the set. Sometimes, with a favourable structure, the original problem formulation works

well for the defined problem. We performed a similar treatment to the constraint as our

constraint set is a manifold.

Our Contribution: To optimize a function in an abstract manifold is not convex opti-

mization even if we consider Riemannian metric. If we could reformulate the constraint

set with some convex properties it might have some empirical impact. To summarize, the

key contributions of this chapter are the following :

i We use a logarithmic barrier method to manifold optimisation, for which we show

how reformulation required based on the convexity, for starting point calculation.

ii Use of logarithmic barrier method with exact line search, which ensures small duality

gap.

4.1 Background

As mentioned, computation over manifolds is not an easy task because calculation of

geodesic distance is difficult. For this reason, there are several methods (Ji, 2007; Manton,

2002) which do not require consideration of any assumptions for the performance of opti-

misation on manifolds. In this chapter, we consider matrix manifold as our constraint set

to optimise the linear function. This study presents novel algorithms that iteratively con-

verge to a global minimum of a linear function f(x) subject to the constraint. The results

are obtained by explicating the constrained optimisation problem as an unconstrained one

on a manifold using the logarithmic barrier function. The global optimum is assured by

the assumption of the convex hull over the manifold. However, this assumption signifi-

cantly reduces the complexity of the optimisation problem. We can reformulate the given

problem with several convex properties; this might have a robust experimental impact.

This provides the missing connection, and makes manifold optimisation not only match

Matlab solver, but often outperform it.
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Optimisation on manifolds is a fast-growing research topic in the field of non-linear opti-

misation (Boumal et al., 2014). The purpose is to provide efficient numerical algorithms

to find (at least local) an optimiser for problems of the form

minimize
x

f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.

x ∈M

where the search space M is a smooth and differentiable manifold that can be endowed

with a Riemannian structure.

For example, the oblique manifold M = {X ∈ Rn×m : (XTX) = 1m}is a product of

spheres. That is, X ∈M if each column of X has unit 2-norm in Rn .

The (compact) Stiefel manifold is the Riemannian sub-manifold of orthonormal matrices,M =

{X ∈ Rn×m : XTX = Im}.

The Grassmann manifold M = {col(X) : X ∈ Rn×m}, where X is a full-rank matrix

and col(X) denotes the subspace spanned by its columns, is the set of subspaces of Rn of

dimension m. Among other things, optimisation over the Grassmann manifold is useful in

low-rank matrix completion.

The special orthogonal group SO(n) = {X ∈ GLn(R); XTX = XXT = In and det(X) =

1} is the group of rotations, typically considered as a Riemannian sub-manifold of Rn×n.

Optimisation problems involving rotation matrices occurring in robotics and computer

vision belong to this manifold (Absil et al., 2009).

The set of symmetric, positive semi definite, fixed-rank matrices are also mani-

folds, M = {X ∈ Rn×n : X = XT , rank(X) = k}. This space is tightly related to the

space of Euclidean distance matrices X such that Xij is the squared distance between two

fixed points xi, xj ∈ Rk (Boumal et al., 2014).

Optimisation on manifolds is a natural candidate for the design of non-linear estimation

algorithms. By operating directly on the low-dimensional search space the computational
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costs can be kept proportionate to the complexity of the sought object. Riemannian op-

timisation generalises popular tools from continuous, unconstrained optimisation, such as

gradient descent, Newton methods, trust-region methods, etc. However, from the classical

Euclidean case to the field of Riemannian search spaces, information is lost in the pro-

cess of convergence of the method. The same regularity conditions and global and local

convergence results are established in a mature theory laid out by (Absil et al., 2010).

Apparently, non-convex optimisation problems are still difficult to solve, and the relevance

of the reached optimisers often depends on the quality of the initial starting point of the

solution.

Traditional methods, like steepest descent, are not only robust in solving optimisation

problems, but they almost always successfully converge to a local minimum. However,

these algorithms converge slowly (Manton, 2002). This method was first introduced to

manifolds by Luenberger (1972, 1973) and Gabay (1982). In the early nineties, this method

was performed on problems in systems and control theory by Brockett (1993), Helmke and

Moore (2012), Smith (2013) and Mahony (1994).

Compared to the steepest descent method, the Newton method has a quadratic con-

vergence rate. In 1982, Gabay (1982) extended the Newton method to a Riemannian

sub-manifold of Rn by updating iterations along the geodesic. Other independent work to

extend the Newton method on Riemannian manifolds has been performed by Smith (1994)

and Mahony (1994) restricted to the compact Lie group, and by Udriste (1994), limited

to convex optimisation problems on Riemannian manifolds. Edelman et al. (1998) also

introduced a Newton method for the optimisation of orthogonality constraints - Stiefel

and Grassmann manifolds. Dedieu et al. (2003) also studied the Newton method to find

the zero of a vector field on general Riemannian manifolds.

Even though Newton’s method has a faster quadratic convergence rate, it requires com-

putation of the inverse of a symmetric matrix, called the Hessian, consisting of the second

order local information of the cost function. Therefore, it increases the computational

cost.

When considering large-scale optimisation problems with sparse Hessian matrices, quasi-

Newton methods encounter difficulties. The conjugate gradient method is used for solving
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such problems as it avoids computing the inverse of the Hessian (Jiang et al., 2007).

The barrier method approach with exact line search is used for optimisation problems

over matrix manifolds. First, general properties of the barrier method in Euclidean space

are derived. Based on this, a logarithmic barrier method is proposed for optimisation of

functions; this guarantees that the solution falls within any given small neighbourhood of

the optimal solution in a finite number of steps. This method only requires convexification

for the starting parameter. We introduced a different invocation of the barrier method

to solve optimisation problem over manifolds. An example evaluation of an optimisation

problem is also given to illustrate the proposed concept and algorithm. The first algorithm

based on the logarithmic barrier method was coupled with Armijo’s condition for choosing

the step size at each iteration (Polak, 2012). According to Polak, the steepest descent

method is nearly non-implementable for the calculation of step-size. The second type of

algorithm derived in this chapter is based on the traditional Newton algorithm. The novel

component of our study is that the nearby neighbourhood to which the barrier method

or Newton method is applied changes at every cycle. There are several advantages of ap-

plying both the barrier method and Newton calculations in our method. The logarithmic

barrier method guarantees that the solution should lie within the constraint region. Back-

tracking sort calculations coupled with Armijo’s condition quite often manage to converge

to a local minimum. Newton method calculations, using second-order derivatives, can ac-

complish quadratic convergence. This quick convergence produces several disadvantages

to the whole algorithm. There will be no guarantee that the algorithm will converge to a

minimum, rather, it can converge to a closest critical point, which can be a local minimum

or saddle point (Manton, 2002). However, our assumption of the convex hull over the

manifold ruled out this possibility of a local minimum. The operation of numerical Hes-

sian and gradient with Armijo’s condition provides a decrease in the objective function,

which is expected to achieve the final solution.

4.2 Problem Set-up

The main motivation for our method comes from the need to solve a continuous, uncon-

strained optimisation problem. The steepest descent and gradient descent methods are
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well known available algorithms. M can be considered as a collection of points without

any specific manifold structure, which turns M into a topological set. Then, we can apply

the notion of neighbours, which can determine if the real-valued function on M is smooth

or not. The real-valued function f on the constraint set M defines the goal of the optimi-

sation problem, and is termed the objective function (Absil et al., 2010). Computing the

minimum value of f is our goal.

Problem.

Given: a manifold M and a function f :M→ R.

Solution : a feasible x∗ of M such that there is a small neighbourhood B of x∗ in M

where f(x∗) ≤ f(x) for all x ∈ B.

Our algorithm solves this problem over manifold M iteratively. Given a starting point

x0 ∈M, our algorithm produces a sequence of (xk)k≥0 in M which converges to x∗. The

convex hull assumption over M assures that x∗ does not give us a local minimiser.

According to Absil et al. (2009), the simplest approach to optimise a differentiable function

is to continuously search for a point in the descent direction where the gradient vanishes.

These points where 5f = 0 are called stationary points or critical points of f . The closest

numerical analogy is the class of optimisation methods that uses line-search procedures

and which can calculate gradient in the descent direction. However, on a manifold, there

is the notion of moving in the direction of a tangent vector, while staying on the manifold.

Conceptually, a retraction R at x, denoted by Rx, is a mapping from tangent space TxM

to M with a local rigidity condition that preserves the gradient at x. According to

LaValle (2006), the tangent space TxM at a point p on an manifoldM is an n-dimensional

hyperplane in Rm that best approximates M around p, when the hyperplane origin is

translated to p.

Definition 1 (retraction with projection). A retraction on a manifold M is a smooth

mapping R from the tangent bundle TM ontoM with the following properties. For all x

in M , let Rx denote the restriction of R to TxM. Then,

• Rx(0) = x, where 0 is the zero element of TxM.

• The distance dp→x = min‖p− x‖ (Absil and Malick, 2012).
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• The angles between vectors are preserved, i.e., ∀x, y ∈ TxM, 〈Tranp(tx), T ranp(ty)〉 =

〈x, y〉.

Proof: for a manifold, any two points can be joined by a piecewise smooth curve segment.

Thus they admit a natural differentiable structure which can be defined in Riemannian

metric (Absil et al., 2009). The collection of all points and their respective tangent spaces

is called a tangent bundle TM, which is geodesically complete. Since M is geodesically

complete, given a point p ∈ TxM, there exists a unique x ∈ M, such that the distance

d(p, x) is minimal.

Since M is smooth, one of its properties is that, in the case of parallel transport of point

x to y, the angles between vectors are preserved (Ji, 2007).

4.3 Manifolds

In this study, along with the SR and HR data set which has been explained in Chapter 2,

a torus data set was also used. A torus data set is created by the equation below:

y =


(2 + cos(x1)) · cos(x2)

(2 + cos(x1)) · sin(x2)

sin(x1)

 (4.1)

where 0 ≤ x1 ≤ 2π and 0 ≤ x2 ≤ 2π. With this parametric equation, the torus surface is

isotropic in the plane spanned by the coordinates y1 and y2.

4.4 Starting Point Calculation

For any optimisation problem, the choice of a starting point plays an important role.

Interior methods for non-linear and quadratic programming perform poorly, or in some

cases even fail, if we choose an incorrect starting point (Gertz et al., 2004). To overcome

this problem, heuristics have been used to obtain a starting point (Mehrotra, 1992). The
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starting solution x0 is either defined by the user or set to 0(x0 = 0). In our approach, we

determined our starting point by:

Algorithm 4 Starting point x0

Input: data M, size m.

Get manifold data from Eq. 2.1, say M.

Calculate the convex hull C =

{
N∑
i=1

λiPi

}
where λi ≥ 0, ∀i

∑N
i=1 λi = 1 and Pi ∈M.

Get the Chebyshev centre of the convex hull C, say xc.

Find closest point xc∗ by retraction of xc to M (Absil et al., 2009; Boumal, 2014).

x0 ← xc∗.

After we obtain the initial point, we begin to evaluate the gradient and Hessian of the

given function f (Ji et al., 2008).

4.5 Optimisation over Manifolds

In Euclidean optimisation, the main goal is to find a descent direction and then to perform

a line-search to search minimum and ensure convergence. On a manifold, the descent

direction is calculated in tangent space. Given a descent direction, we use the exact line

search method on the tangent space and retract the final point to the manifold. Descent

direction over manifold is simply the direction on the tangent space. The notion of tangent

vector at a point x ∈ M can be defined when M is a sub-manifold of a Euclidean space

η (Absil et al., 2010; Hosseini and Sra, 2015). As we make the assumption of a convex hull,

M automatically becomes Euclidean space where we can perform gradient and Hessian.

The set of all tangent vectors at x is defined as tangent space to M at x denoted by

TxM. A point p ∈ C can be transported to the tangent vector space TxM on the manifold

and expressed as Tranp(tx) from Definition 1. Now, the first, second and third order

derivatives of f are defined as follows:

f
′
x(p) = 5f(Tranp(tX)) (4.2)
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f
′′
x (p) = 52f(Tranp(tX)) (4.3)

f
′′′
x (p) = 53f(Tranp(tX)) (4.4)

The gradient and Hessian of f at p ∈ C, are denoted by gradpf and hesspf respectively

and given by:

gradpf = f
′
x(p) (4.5)

hesspf = f
′′
x (p), x ∈ TxM (4.6)

4.5.1 Barrier Function

Given c ∈ Rn and αi ∈ R, i = 1, . . . ,m, we consider the following convex programming

problem

minimise
x

cTx

subject to fi(x) ≤ αi, i = 1, . . . ,m.

where all functions fi(x), i = 1, . . . ,m. are convex. To apply the interior point method to

this problem, we must construct the self-concordant barrier for the domain. Let us assume

that there exists standard self-concordant barriers Fi(x) for the inequality constraints

fi(x) ≤ αi. Then, the resulting barrier function for this is

F (x) =

m∑
i=1

fi(x) (4.7)

Given a sequence {µt} such that {µt} > 0, we minimise the new function

f(x, µt) =
1

µt
cTx+ F (x) (4.8)

in sequence and use the solution of the current minimisation problem as the initial guess

for the next optimisation (Ji, 2007). As µt goes to zero in the limit, we obtain the minimum

of the original problem. In fact, according to Boyd and Vandenberghe (2004), it is not

necessary to obtain the exact minimum of the cost function f(x, µt) for every given µt. A

common method used in practice is to perform one step or several steps of Newton method

and then choose a different µ.
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Gradient-based methods are preferred for large scale problems given that they avoid com-

puting the inverse of the Hessian matrix. Since cTx is linear and F (x) is standard self-

concordant, f(x, µt) is still standard self-concordant for all µt > 0 (Nesterov, 2013). As we

take the convex hull assumption over the manifold, we can use the barrier self-concordant

function to optimise the objective function.

The barrier function we used in our algorithm is

F (x) = −log{fi(x)− αi}. (4.9)

We used the logarithmic barrier because as fi(x) − αi tends to 0, log{fi(x) − αi} goes

to negative infinity. This introduces a gradient to the function being optimised which

favours less extreme values of x, while having relatively low impact on the function away

from these extremes. Another advantage of logarithmic barrier functions is that they are

less computationally expensive, depending on the function being optimised (Burer et al.,

2003).

Algorithm 5 Solver x∗

Input: Function f : cTx, constraint M, size m

x0 = call procedure starting point with M

Initialize µ.

for i = 1 to MAX ITERATION do

Make the problem unconstrained by using Eq. 4.8.

Calculate the gradient from Eq. 4.3. And −f ′x(p) is the descent direction.

repeat

Initialize the step length s← 1

Find a feasible point xk and perform backtracking line search.

Transport xk to manifold M by Transxk(ty), where y ∈M using Definition 1.

Update step size s. This step is the Armijo-Goldstein condition.

until min fi(x) < 0

Update µ until f(x∗, µt) ≤ f(xk, µt)

end for
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4.5.2 Preliminaries of Primal-dual Approach

Primal-dual scheme is mainly used to obtain a feasible integral solution for an ILP by

solving its LP relaxation. For a linear program, there always exists a dual linear program.

Further, the dual of the dual linear program is the original linear program. The original

LP is referred to as the primal LP. In order to use this approach, the primal LP (a

minimisation problem, in this case) has to be in the following standard form:

Minimise cTx subject to

Ax ≥ b; N constraints (4.10)

xk ≥ 0; ∀k ∈ {1, 2, . . . ,M} .

From the primal LP, the corresponding dual LP (which becomes a maximisation problem)

can be written as follows:

Maximise bTy subject to

ATy ≤ c; M constraints (4.11)

yl ≥ 0; ∀l ∈ {1, 2, . . . , N} .

Observe that, each constraint in the primal problem has a corresponding variable in the

dual problem, and vice-versa. More details about relations between primal and dual

problems can be found in Vazirani (2013).

We now list some of the well-known results from Vazirani (2013) that will be used in the

subsequent part of this section to prove the optimality gap.

Theorem 4.1. LP Duality Theorem.

The primal LP has a finite optimum if, and only if, the corresponding dual LP has a finite

optimum. Moreover, if x∗ = [ x∗1 x∗2 · · · x∗M ]T and y∗ = [ y∗1 y∗2 · · · y∗N ]T are

optimal solutions for the primal LP and the dual LP respectively, then it holds that

cTx∗ = bTy∗.
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Theorem 4.2. Weak Duality Theorem.

If x = [ x1 x2 · · · xM ]T and y = [ y1 y2 · · · yN ]T are feasible solutions of the

primal LP and the dual LP, respectively, then it holds that

cTx ≥ bTy.

Theorem 4.3. Complementary Slackness Condition: Let x and y be the primal and

the dual LP feasible solutions respectively. Then x and y are both optimal if, and only if,

both of the following conditions hold

Primal complementary slackness condition:

∀k ∈ {1, 2, . . . ,M}: either xk = 0 or
∑N

l=1 aklyl = ck

Dual complementary slackness condition:

∀l ∈ {1, 2, . . . , N}: either yk = 0 or
∑M

k=1 aklxk = bl

where akl is an element of A in kth row and lth column.

For the problem under consideration, we need to find a feasible solution for an linear

program as we make the assumption of convex hull:

Minimise cTx subject to

Ax ≥ b; N constraints (4.12)

xk ∈ R; ∀k ∈ {1, 2, . . . ,M}

In such cases, the primal-dual schema is used with linear relaxation (shown in Eq. 4.10)

for the ILP (shown in Eq. 4.12). As we need integer values for x, Theorem 4.1 to Theo-

rem 4.3 cannot be used directly. In such cases, since we require only a feasible solution,

the complementary slackness conditions (shown in Theorem 4.3) can be relaxed. Approx-

imation algorithms that are designed using the primal-dual schema commonly ensure that

one of the conditions shown in Theorem 4.3 holds and the other is suitably relaxed. In the

following theorem, two different situations are captured — one for relaxing each condition.

However, if primal conditions can be ensured, then set α = 1, and if dual conditions can

be ensured, then set β = 1 (Vazirani, 2013).
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Theorem 4.4. Let x and y be the feasible solutions for primal and dual LPs respectively,

that satisfy the relaxed complementary slackness conditions stated above. Then it holds:

cTx ≤ (αβ)bTy (4.13)

The optimality gap of any optimization problem can be defied as :

gap = cTx− bT y (4.14)

4.6 Experiments

We performed numerous experiments to examine the correctness of our method. Every test

was performed 20 times for each data set, as the dataset was generated randomly. After

that, for each optimisation problem, we used 30 Max Iteration to perform line search

during the barrier method over the manifold. The line search can be stopped earlier if

the gradient becomes zero or very close to zero (tolerance). In our experiment, we set

tolerance to 1e−10.

Below we report the accurate comparison of our method on Swiss roll data. We generated

two different types of Swiss roll data and a torus from Eq. 2.1 and 4.1. These are referred

to as standard Swiss roll, heated Swiss roll and torus. First, we minimised a linear function

cTx over these three manifolds, where c is the coefficient of the ~x.

f(x) : cTx→ c1x1 + c2x2 + ....+ cnxn (4.15)

Next, to verify our algorithm, we attempted to minimise a paraboloid function over the

torus manifold. We generated the non-linear parabolic function in such a way that the

function passed by the origin. Thus, we know that the minimum point of the function is

at the origin. However, the origin in our torus manifold does not include the origin in the

sample point set. According to our algorithm, the optimal solution comes to the inner

surface of the torus as expected. In this experiment, a 3-dimensional parabolic function
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Figure 4.1: Optimal point over manifold for non-linear function 4.16

Table 4.1: Optimal result for paraboloid function over various sample torus

Points Our Approach Solver Time(Sec)
50 0.440 0.440 15.5
100 0.442 0.442 15.77
200 0.449 0.449 15.26
300 0.449 0.449 15.40
400 0.449 0.452 15.45
500 0.456 Nil 15.52
700 0.456 Nil 15.85
800 0.456 Nil 15.99
900 0.456 Nil 16.21
1000 0.456 Nil 16.29

was used to verify our algorithm, which can be given by:

z = c1x1
2 + c2x2

2 (4.16)

where x1 and x2 are uniformly distributed over[−1,+1]. Table 4.1 gives a clear picture

of our experiment. We chose c1 = c2 = 0.1 for Eq. 4.16. Then we calculated the opti-

mum value for the function z. The dataset used for this experiment was Torus which is

represented in Fig. 4.2. However, after 500 sample points, Matlab solver stopped giving

results saying the solution was unbound. Fig. 4.1 shows the actual optimal point if we try

to optimize the non-linear function (4.16) over a torus.

Table 4.2, Table 4.3 and Table 4.4 present the comparison between our method and the
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Figure 4.2: Two data sets of increasing complexity: (a) SR; (b) HR; (c) torus; (d)
sphere

Table 4.2: Optimal result for linear function over various sample SR

Points Our Approach Solver Time(Sec)
50 -6.54 -6.65 15.2
100 -6.27 -6.65 15.22
200 -6.13 -6.78 12.52
300 -6.43 -6.78 15.40
400 -6.69 -6.84 15.45
500 -6.56 -6.86 15.52
700 -6.58 -6.86 15.85
800 -6.74 -6.86 15.99
900 -6.74 -6.96 16.21
1000 -6.74 -6.96 16.29

standard Matlab solver. We compared our results to a various number of sampled points

starting from 10. We did the same for the Matlab solver. For SR, the accuracy of our

method with the standard solver was in the range of 98%. But in the case of HR, the

accuracy varied from 90-100% for various sampled points, and for torus, the accuracy was

around 85%. However, we can see from the Table 4.1 that as the number of sample points

increases, Matlab started to give no solution. From Table 4.4 and Table 4.3, it can be

seen that Matlab does not give any result for 700 and 800 sample points. Fig. 4.2 shows

all variety of data set we have used.
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Table 4.3: Optimal result for linear function over various sample HR

Points Our Approach Solver Time(Sec)
50 -4.32 -6.34 12.36
100 -8.34 -8.30 15.22
200 -8.34 -8.34 15.23
300 -8.34 -8.62 15.22
400 -8.62 -8.62 15.22
500 -8.62 -8.62 15.22
600 -8.62 -8.62 15.22
700 -8.62 Nil 15.22
800 -8.62 Nil 15.22
900 -8.62 -8.62 15.22
1000 -8.62 -8.62 15.22

Table 4.4: Optimal result for linear function over various sample Torus

Points Our Approach Solver Accuracy
50 -6.32 -6.32 15.07
100 -6.32 -6.32 15.31
200 -6.33 -6.33 15.12
300 -6.33 -6.33 15.12
400 -6.32 -6.33 14.74
500 -6.31 -6.34 15.24
600 -6.06 -6.34 15.23
700 -6.31 Nil 15.19
800 -6.52 Nil 15.10
900 -6.52 -6.52 15.39
1000 -6.52 Nil 15.34

From Table 4.2, Table 4.3 and Table 4.4 we can clearly see that, for each and every sampled

manifold, we calculated the optimal solution for Eq. 4.15.
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Figure 4.3: Optimality gap for each sampled manifold for given function cTx.

From Fig. 4.3 we can see that, for all the sampled manifolds, the optimality gap for the

objective linear function is between 10−6 to 10−8. We ran several experiments for the same

linear function and took the average of the optimality gap for every sampled manifold.

From the graph it can be seen that as we increase the number of samples in the data set,

we reduce the optimality gap for our optimisation problem, and at 1000 sample points it

is very close to zero. This phenomenon indicates that if we increase the number of sample

points, it behaves like a curved surface, and as explained in section 2, it can join as a

piecewise smooth curve segment. We then obtain more accurate results.

We are achieving this optimality gap, which is very close to the actual optimal solution,

in substantially less time.

From Fig. 4.4, we can say that the average time needed to find each optimal value for

a given linear function under constraint M is 15 to 16 seconds. The time taken by each

experiment is considered less for the optimisation problem. The bar graph 4.4 shows the

time analysis for each data set we used as a constraint. This shows a randomly selected

matrix manifold and the time taken to reach the optimal solution.
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Figure 4.4: Comparison of time taken for different data sets.
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4.7 Chapter Summary

In summary, optimisation on manifolds depends on the exploitation of tools of differential

geometry to build optimisation schemes on manifolds, and then the conversion of these

abstract geometric algorithms into practical numerical methods. This can be applied to

problems that can be rephrased, such as optimising a differentiable function over a man-

ifold. We close by pointing out that optimisation of real-valued functions on manifolds,

as formulated in Problem 1, is not the only place where numerical optimisation and dif-

ferential geometry meet. We have achieved comparatively good results with the synthetic

data set. Other examples can be found in Absil (2009); Dedieu et al. (2005); Nesterov and

Nemirovski (2008); Zhao (2010); these studies all describe the same connection between

geometry and optimisation. Three significant but easy optimisation problems are given to

illustrate the efficiency of the proposed concept and algorithm.



Chapter 5

Improving Operational

Performance in Service Delivery

Organisations Using a

Meta-heuristic Task Allocation

Algorithm

Efficient allocation of tasks to employees is crucial in SDOs. It can facilitate the achieve-

ment of SLAs, utilises the employees well and improves operational performance. Task

allocation is a challenging problem that addresses the inter-dynamics of tasks and employ-

ees, and requires consideration of factors such as diversity, utilisation, skills and fairness.

The combination of task deadlines and associated SLA requirements adds another dimen-

sion to the complexity of the data and problem. In this Chapter, we propose a Tabu search

algorithm for efficient task allocation. The algorithm is aware of employee utilisation, pro-

ductivity and fairness. We evaluate the proposed algorithm using real-world transaction

processing data from a large SDO. The results show that the proposed approach can reduce

deadline misses substantially, in comparison to the organisation’s current approach.

96
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In this Chapter, we address the problem of efficiently allocating tasks to resources in a SDO,

with the objective of allocating tasks in a real time environment. We attempt to obtain

final allocations within a certain optimality gap. We also consider several other constraints,

like that the number of baseline violations is within a specified limit (KPI/SLA-aware),

the assigned workload is fair among the resources, that utilisation of each resource should

be within the specified lower and upper bounds to ensure that all the resources are well

utilised (utilisation-aware) and productivity of each resource is within a specified upper

limit, as described in (Mulla et al., 2016).

Provided an ILP-based solution for the problem, ILP-based solutions take a substantially

increased amount of time as the number of resources and number of tasks increases. For

example, the ILP-based approach does not provide any feasible solution (within two hours)

for a scenario where we have 22 resources and 2000 tasks. As SDOs need an allocation

matrix for the resources in (near-)real time, an ILP-based solution cannot be deployed in

practice. Therefore, we propose a meta-heuristic-based approach in this paper. It involves

two steps:

1. We convert the problem to a meta-heuristic-based problem in which Tabu search

algorithms have been proven to be effective and fast.

2. We propose a Tabu-search (TS) based algorithm.

This chapter is organized as follows. Section 5.2 presents the notations and the system

model. Our task allocation approach based on Tabu search is presented in Section 5.4.

Section 5.5 presents the experimental set up and discusses the efficacy of the proposed

solution when applied to real-world data from a large SDO. Finally, Section 5.6 summarize

the chapter.

5.1 Related Work

The problem of task allocation has been well studied (Cheng and Sin, 1990; Coffman Jr

et al., 1984; Dowsland and Dowsland, 1992; Graham et al., 1979; Lawler et al., 1982;
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Mokotoff, 2001; Price, 1982; Wiese et al., 2013) with a focus on assigning tasks to ma-

chines (non-human resources). These studies cannot be applied to the problem under

consideration since they cannot handle some of the human related aspects, such as pro-

ductivity and utilisation of employees.

Other studies (Ernst et al., 2004; Krishnamoorthy and Ernst, 2001; Lapègue et al., 2014;

Prot et al., 2015; Smet et al., 2013) have specifically looked into the problem of allocation of

tasks to employees. Ernst et al. (2004) studied the problem of assigning employees to shifts

based on an estimate of the skills required for the jobs in those shifts. Krishnamoorthy

and Ernst (2001) discussed a class of personnel task scheduling problems (that arise in

restoring applications), mostly related to scheduling of employees in different shifts and

assigning different tasks to a set of shifts. Smet et al. (2013) proposed a hybrid-heuristic

approach in which the objective was to assign the tasks such that a minimum number of

resources was used, a problem clearly different from ours. This approach considers skills

of employees and demand while recommending reallocation. The allocation is performed

considering the availability of employees, skills of employees, skills required to perform

a task and start and end date for the task. Other studies (Lapègue et al., 2014; Prot

et al., 2015) examined the problem with a fairness objective while ensuring the regulatory

requirements. These studies did not consider the effect of allocation on operational KPIs,

nor did they consider key human factors such as employee productivity and utilisation.

Thus, none of these studies can be directly applied to the problem under consideration

in this work. Thus, none of these works can be directly applied to the problem under

consideration in this work.

Several mechanisms have been proposed in studies by Fields et al. (1992); Fletcher et al.

(2012); Hamadi and Quimper (2007); Mitra et al. (2001); Powell et al. (1999); Su (2002)

who performed allocation of tasks to employees using an allocation method that was

skill- and fairness-aware. Many of these techniques (Fields et al., 1992; Mitra et al.,

2001; Powell et al., 1999; Su, 2002) were not utilisation-, productivity- and SLA-aware

(e.g., minimising the number and magnitude of baseline time violations). In Fletcher

et al. (2012), an engine was configured to determine assignment of a resource to a task

considering that the task and the resource profile proposed. This took into account resource

utilisation. However, it was not productivity-aware, and since there was no deadline for
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tasks, its objective was different than ours. In Hamadi and Quimper (2007), a constraint

programming based allocation technique was proposed. It performed skill-based allocation

and considered fairness while trying to minimise the cost. However, the allocation strategy

was not productivity-aware or utilisation-aware, and did not focus on minimising deadline

violations.

In most SDOs, in order to effectively process the incoming transactions, one needs to effi-

ciently allocate these transactions to employees on a daily basis. Several parameters need

to be considered for such an allocation exercise, some of which are the skills required to

perform a transaction, the fairness in terms of workload allocation to employees, the com-

mitted SLA in terms of the number and magnitude of baseline violations, the utilisation of

employees and the performance of employees, among others. Although there exists several

available allocation techniques on the market, most of them try to solve the problem by

considering just one or two of the following aspects, and none of them address the problem

holistically by considering all of these aspects.

Skill based-allocation: To process a transaction, an employee needs to have certain

pre-defined skills. These skills may differ depending on the type of transaction. Allocating

a transaction to an employee who does not possess the required skills may result in SLA

misses, deterioration in performance of employees and employee dissatisfaction. Generally,

different types of transactions that an organisation needs to process and the respective

skills required to process the same are known in advance. Therefore, when performing the

allocation, it must be ensured that the transactions are assigned to employees with the

right skills.

Number and magnitude of baseline violations: Typically, each transaction type has

an estimated time within which the processing of a transaction of that type needs to be

completed (generally referred to as the baseline time of the transaction type). Ideally,

each transaction must be finished within its baseline time. However, in reality it may not

be possible for several reasons, including high workload, improper transaction assignment,

etc. Therefore, one of the ways in which SLAs are set is to put an upper limit on the

number of transactions that can violate the baselines and to minimise the magnitude of

such baseline violations as much as possible.
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Fairness: The allocation scheme must ensure that the transactions are assigned fairly

among the available employees. One way to achieve this would be to make sure that,

while assigning the transactions, the workload of each employee can only vary within a

specified range from the average workload of all employees. In other words, we can ensure

that no employee has a workload beyond a certain limit from the average workload.

Utilisation of employees: Often, it can happen that although the allocation is fair,

employees in the group can be under- or over-utilized, which is not a desired scenario. It is

crucial to utilise these resources efficiently to reduce cost, thereby increasing profit. Any

task allocation scheme needs to ensure that the employees are utilised well, i.e., enough

work is allocated to each employee to keep them occupied most of the time. At the same

time, we need to make sure that employees are not overloaded with too much work.

For example, it is possible for the allocated work to keep the employees busy for only 50%

of their available time, or sometimes when there are too many transactions to handle, an

over allocation of work which can keep employees busy say 150% of their available time,

implying that employees are overloaded with work, and they may have to work beyond

their available hours to complete the work. The first scenario indicates that the group

is overstaffed and the second scenario indicates that the group is understaffed. A good

allocation scheme should try to avoid such scenarios and one way it can do so is by posing

explicit lower and upper bounds on utilisation of each employee.

Incentive-aware allocation: In an inferior allocation scheme, it is possible that certain

employees who are performing extremely well with respect to certain transaction types

(say, an employee is finishing these transactions well within their respective baselines)

might be repeatedly allotted transactions of the same type. This may give an unfair ad-

vantage for these employees to be more and more productive compared to their peers, in

terms of the number of transactions that they finish in a given time. Typically, incentive

calculation in organisations is dependent on productivity; such biased allocation can give

unfair advantage to certain employees by allowing them to claim a major share of the

team’s incentive, leaving almost nothing for others. A good allocation scheme should ad-

dress this issue by giving equal opportunity for all employees to be productive by providing

unbiased allocation of tasks.
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Dynamic re-allocation: The performance of employees may vary depending on the

time of the day. For example, performance of some employees may improve as the day

progresses, while it may reduce for others. So, with one time allocation, say at the be-

ginning of the day, it may not be possible to keep some of the above discussed metrics in

check. Therefore, a good allocation scheme needs to dynamically re-allocate transactions

depending on the real-time performance of employees.

Table 5.1, provides an integer programming model to obtain the optimal solution for the

given resources and task. However, as we increase the number resources and tasks, ILP

takes an increased amount of time to calculate the allocation matrix. In our solution, we

always obtain the allocation matrix in less than a minute. However, we have some duality

gap in our solution compared with the optimal solution obtained from (Mulla et al., 2016),

which is acceptable if we address the problem as a real-time problem. Table 5.1 summarises

the available state-of-the-art assignment algorithms and the contributions of this work.
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Resources Work
Skill-aware and

KPI/SLA-aware
Resource Resource Approximation

Fairness-aware utilisation-aware productivity-aware guarantee

Machines

(Graham et al., 1979; Price, 1982)

Partiala Partialb No No Partialc

(Cheng and Sin, 1990; Mokotoff, 2001)
(Lawler et al., 1982)

(Coffman Jr et al., 1984)
(Dowsland and Dowsland, 1992)

(Wiese et al., 2013)

Employees

(Krishnamoorthy and Ernst, 2001)

Partial Partial No No No
(Ernst et al., 2004)
(Smet et al., 2013)

(Lapègue et al., 2014)
(Prot et al., 2015)

Employees

(Su, 2002)

Partial No No No No
(Powell et al., 1999)
(Mitra et al., 2001)
(Fields et al., 1992)

Employees (Fletcher et al., 2012) Yes No Yes No No
Employees (Hamadi and Quimper, 2007) Yes No No No No

Employees (Mulla et al., 2016) Yes Yes Yes Yes Yes
Employees This work Yes Yes Yes Yes Yes
a “Partial” in this column indicates that several works are skill-aware but not fairness-aware and several works are fairness-aware but not skill-aware, while several works

are both skill- and fairness-aware and others are neither skill- nor fairness-aware.
b “Partial” in this column indicates that only a few works are KPI/SLA-aware although those SLAs might be different than what is considered here (i.e., minimising the

number and the magnitude of task deadline violations).
c “Partial” in this column indicates that only a few works have proven approximation guarantees.

Table 5.1: Summary of available state-of-the-art task assignment algorithms along with the contributions of this work (Mulla et al., 2016)
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5.2 System Model

We consider the problem of allocating a set Π = {π1, π2, . . ., πn} of n tasks to a set

R = {r1, r2, . . . , rm} of m employees (referred to as resources) in a services delivery setting.

Each task πj is characterised by a processing time and a baseline time bj (also referred to

as deadline). The processing time of a task depends on the resource that processes it and

the processing time of πj when processed by ri is denoted by tij , where j ∈ {1, 2, . . . , n}

and i ∈ {1, 2, . . . ,m}. A task πj that cannot be processed by a resource ri (e.g., if the

resource does not have the skills to process it) is modelled by setting tij to ∞. Ideally,

processing of each task πj has to be completed within bj time units.

For each resource πi, we define the following terms. The workload wi of πi is defined as:

wi
def
=

∑
πj∈Π(i)

tij (5.1)

where Π(i) is the set of tasks assigned to ri. Informally, it is the sum of the processing

times that the resource takes for each task (tij) that is assigned to it. The utilisation ui

of πi is defined as:

ui
def
=

wi
s

(5.2)

where s is the duration of the shift in which πi works. Informally, utilization of a resource

indicates the fraction of time the resource will be occupied with the assigned tasks in a

shift. The productivity pi of πi is defined as:

pi
def
=

∑
πj∈Π(i) bj∑
πj∈Π(i) tij

(5.3)

Informally, it is the ratio of the amount of expected time in which πi needs to complete

all the tasks assigned to him/her to the amount of actual time in which πi will complete

those tasks.

We also use a few other below mentioned notations in this section. Upper limit on the

productivity of any resource is denoted by p̄ and upper limit on the number of baseline

violations is denoted by v̄. The lower and upper bounds on the utilisation of any resource

are denoted by u and ū, respectively. (Bar is used over a letter to denote the upper bound
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and underbar is used to denote the lower bound). The average workload w̃ is defined as:

w̃ = 1
m

∑m
i=1wi. The lower and upper bounds on the workload of a resource are (1−w̄)×w̃

and (1 + w̄)× w̃, respectively.

5.3 ILP-based Task Allocation

In this section, we provide the the Integer linear programming solution provided by (Mulla

et al., 2016), Ialloc, for efficiently allocating tasks to resources considering some of the

constraints specific to SDOs. It is based on solving ILP and works as follows.

First, solve the ILP formulation (on xij variables) shown in Fig. 5.1 using one of the

standard solvers (such as IBM ILOG CPLEX 1 and Gurobi Optimizer 2).

Minimize
∑n

j=1

∑m
i=1 xij × objij

where objij =

 − log

(
vmag×bj−tij

bj×(vmag−1)

)
if tij ≥ bj

0 otherwise
subject to the following constraints:

I1. ∀R ∈ R :
∑m

i=1 xij = 1
I2.

∑n
j=1

∑m
i=1 xij × 1+(tij − bj) ≤ v̄ × n

I3. ∀ri ∈ R : |wi − w̃| < w̄ × w̃
I4. ∀ri ∈ R :

∑n
j=1 xij×bj∑n
j=1 xij×tij

< p̄

I5. ∀ri ∈ R :
∑n

j=1 xij × tij ≥ u× s
I6. ∀ri ∈ R :

∑n
j=1 xij × tij ≤ ū× s

I7. ∀πj ∈ Π, ∀ri ∈ R : xij ∈ {0, 1}

where 1+(f)
def
=

{
1 if f > 0
0 otherwise

Figure 5.1: Integer Linear programming formulation for assigning tasks in Γ to
resources in Π

The ILP formulation tries to maximise the operational KPIs by keeping the number of

baseline violations within the defined limit and further by minimising the magnitude of

these violations. The objective function is an approximation of an indicator function.

This function sets a nonlinear cost for the magnitude of baseline violations. In this study,

we have set this threshold to vmag · bj according to their paper which implies that if the

1http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
2http://www.gurobi.com/products/gurobi-optimizer
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magnitude of violation exceeds this value, a prohibitively large cost is acquired. Hence, the

formulation increasingly tries to minimise the magnitude of violations as much as possible.

In the ILP shown in Fig. 5.1, each variable xij indicates the assignment of task πj to

resource ri. Constraint I1 combined with constraint I7 enforces that each task is to

be allocated exactly one resource. Constraint I2 enforces that the number of baseline

violations is within the defined limit. Constraint I3 specifies that the workload of any

resource or employee is within a specified range of the average workload of the team.

Constraint I4 enforces that the productivity of any resource is within the designated

threshold. Constraint I5 and I6 enforce lower and upper bounds on the utilisation of any

resource. Finally, constraint I7 specifies the range for xij indicator variables.

Using the solution output by the solver, the tasks are assigned to resources or employees

as follows. If xij = 1 then assign task πj to resource ri.

If the problem state turns out to be infeasible, we need to update the thresholds on

productivity, utilisation and workload, and try to solve the formulation with the new

thresholds; this process is performed iteratively until the solver outputs a feasible solution.

The changing of thresholds can be performed efficiently with the help of the solver.

5.4 Tabu Search

Tabu search is generally implemented as a single search trajectory direct search method.

The concept was originally proposed by (Glover, 1990), and since then, this research

technique has been used in many applications. Tabu search has been applied to discrete

combinatorial optimisation problems such as graph colouring and Travelling Salesman.

Tabu search is initiated at a feasible starting point within a solution. After that, it identifies

sequences of moves and whilst that process is executed, a candidate list is generated. An

evaluation process can determine whether the member belongs to the list or not. Tabu

search has three main advantages (Glover, 1990) : (1) the use of flexible attribute-based

design to permit better evaluation criteria and historical search information to exploit the

problem more thoroughly; (2) an associated mechanism of control based on the interplay

between conditions that constrain and free the search process; and (3) intensification
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strategies einforce move combinations and solution features historically. The below flow

chart describes how Tabu search has been applied to our problem.

Begin with a starting allocation.

Create a candidate list

Obtain first solution from

savings of the resources.

Choose the best ad-

missible candidate

Designate the solution obtained as the

new current solution. Record it as best

solution if it improves the previous best.

Stopping criterion

Stop if a specified number of it-

erations has elapsed or since the

last best solution was found.

Terminate

globally

Check the

performance

of the system

Update admissi-

bility conditions

Stop
Continue

Figure 5.2: Workflow of Tabu Search
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We used the TS approach to refine the solution obtained by using the given heuristic

algorithm. Although a TS-based algorithm is proposed in (Liang et al., 2002) for the

orienteering problem, our algorithm is different from this. Our algorithm works for the

resource allocation matrix with the score of each resource, which is different from the graph

discussed in (Liang et al., 2002). In (Zhou et al., 2015), a TS-based algorithm is used for a

wireless relay network where the problem was simplified as an orienteering problem. The

TS algorithm was then applied to obtain the best path from the current with a penalty

function of budget and cost of path. Furthermore, our algorithm only cares about the last

assignment for each resource in the allocation matrix. Thus, the proposed algorithm is

more suitable for our problem.

5.4.1 Tabu Search-Based Task Allocation

To ensure that the system was non-biased in terms of team lead action, we used this ap-

proach. To ensure it was successful and to compare our result with the original ILP (Mulla

et al., 2016), we extracted real-time data from the organisation. We refer to employees as

resources here.

Fig.5.2 describes how we applied Tabu search in our task allocation problem. According

to TS, we first need a solution to start with. In our method, we started with the allocation

given from the savings of the resources. Saving of a resource can be calculated by:

savingsi = bj − tij (5.4)

where bj is the baseline of the task and tij is the time line of the task j assigned to

resource i. This tij has been taken from a random distribution of the same task performed

by various resources. We calculated the savings of resources and whichever resource had

the largest saving (ensuring the resource is able to handle this type of work), was allocated

that task in the first step. However, if the savings of all the resources are negative i.e.,

tij ≥ bj , we assign the task to the resource who has the least negative savings. Then, we

check the performance of the initial allocation. We calculate the utilisation, productivity,

workload and number of violations from the allocation matrix X. The calculation of these
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Algorithm 6 Tabu

1: function Tabu(R,Π, t, b, s) . Where R - Resource array, Π - Set of Task, t -
Timeline matrix, b - Baseline matrix, s - Shift time . i - Resource index, j - Task
index, X - Allocation matrix

2: Initialize X
3: Call PerformanceEval(X, t, b)
4: do
5: if Xij == 1 and tij > bj then
6: V task.append(j)
7: end if
8: for each j in V task do
9: for each i in R do

10: if tij 6= −1 then
11: if Ui ≤ ū andPi ≤ p̄ andWi ≤ w̄ then
12: Tabu listj .append(i)
13: end if
14: end if
15: end for
16: end for
17: X, allocation update fromTabuSearch(Tabu list,X, t, b)
18: while allocation update 6= 0
19: return X
20: end function

vectors has been discussed in Eq. 5.1, 5.2, and 5.3. After that, we make a list of all violated

tasks to perform our TS-based algorithm.

To validate or make the allocation close to the optimal solution, we work with only violated

tasks in our TS-based algorithm. Each violated task from the first allocation X is taken

and a candidate list of resources who can do that task is created. Before adding the

resource to the candidate list, we need to check the current utilisation, productivity and

workload of the resource. The current values of these metrics should be less than ū, p̄

and w̄, which are user driven input to the system. The resource will then be added to the

current set of resources to perform the violated task. Then, we call the TS algorithm with

the Tabu list and current allocation X. Before going into the TS algorithm, we need to

evaluate a score to choose the best candidate from the Tabu list. A score can be evaluated

by the summation of workload and productivity with the penalty of the solution, i.e.,

scorei = (norm(pi) + norm(wi)) + peni (5.5)
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Algorithm 7 Tabu Search

1: function TabuSearch(Tabu list,X, t, b). Where Tabu list - Set of candidate list, X
- Allocation matrix . i - Resource index, j - Task index, scorei - score of resource
from Eq. 5.5

2: allocation update = 0
3: for iteration = 1 to maxiterations do
4: tabu update← 0
5: φ← 1
6: for each j in Tabu list do
7: X′ ← X
8: select inew ∈ Tabu list[j] with the best scoreinew − scoreicur
9: X′icurj ← 0

10: X′inewj ← 1
11: Call PerformanceEval(X′, t, b)
12: Call PerformanceEval(X, t, b)
13: if magV ′ ≤ magV then
14: X← X′
15: φ← φ/2
16: allocation update← 1
17: tabu update← 1
18: W ←W temp
19: P ← P temp
20: end if
21: end for
22: if tabu update == 0 then
23: φ← φ ∗ 2
24: end if
25: end for
26: return X, allocation update
27: end function

where peni is the penalty associated with the solution, and is given by

peni =


0, if bj ≤ ri

φ ∗ (ri − bj), if bj > ri

(5.6)

where ri is the remaining time of the resource from its shift and φ is a penalty parameter

dynamically updated during the search. The parameter φ is initialised at a value of 1.

However, the algorithm is robust with respect to this parameter.

Next, we call the TS algorithm with the Tabu list. First, we generate the score for each

resource present in the Tabu list for the particular task. Then, we select the best resource
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for the task and assign the task to that particular resource. We fix the Tabu list elements,

which are obtained from the previous function, and will be updated in the score function

if assignment is being performed. We update the X with the new selected assignment.

Then, we again call the “PerformanceEval” function to check if the obtained solution

(magnitude of violation) is better or not. If yes, we keep the updated assignment and

update the W,P,U . Otherwise, we go to the next violated task. After we loop through

all the tasks in the violated task list, if we obtain any updated elements in X, we repeat

the whole experiment and try to improve our result iteratively. Thus, we approach the

optimal solution.

5.5 Experimental Results and Discussion

The proposed task allocation mechanism was implemented, and in this section, we discuss

the results of applying our approach on real-world data from a transaction processing

business unit within a large SDO. The resources in the organisation are skilled with regard

to the processes. Different resources are skilled to execute different processes, and the

proficiency levels of resources for the skills can vary. Each team lead is responsible for

handling transactions (of various types) pertaining to certain processes. The team lead

monitors the volume of transactions arriving every day (that he/she is expected to handle)

and allocates them to resources in his/her team based on their skills/proficiency and the

complexity of the transactions. The team lead manages all these mentally, day-in and day-

out. Each transaction type comes with a baseline (unit of time) within which transaction

instances of that type are expected to be completed. Any transaction extending beyond

the baseline is considered to be violating the baseline KPI. We keep track of this KPI via

the number of violations metric, which measures the number of transactions that violated

the baseline. We also keep track of the magnitude of violation, the magnitude of time

by which the baseline is violated. For example, if the baseline of a transaction type is

100 time units and if an instance of that transaction type took 125 time units, then the

magnitude of violation is 25 time units. It is important to keep track of this because the

penalty that the organisation needs to pay also depends on the magnitude of violation.
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We applied the proposed approach on the transactions handled by several team leads to

assess the efficacy of our approach. We present the results on the transactions handled

by four team leads, TL1, TL2, TL3, and TL4 for a period of six months, January to June

2016. In order to study the efficacy of our approach, we need to estimate the likely number

of violations and the magnitude of violations if the transactions are assigned to resources.

To enable this, we extracted the historical processing time distributions for each of the

employees for the various transaction types. For any transaction assigned to a resource,

we randomly sample3 the time from that resources’ processing time distribution for the

transaction type (pertaining to that transaction). Before taking the randomly sampled

processing time from the distribution, we also discarded the outliers values. That means

we discarded the processing times that were much less than that of the baseline (e.g., 25%

of baseline). We did this because these outlier values can affect the standard productivity

and utilisation values. Assuming that the resource would take the sampled time had

he/she been assigned that transaction, we check if that time exceeds the baseline. If so,

we record that as a violation and capture the magnitude by which it exceeds the baseline.

For each transaction, we do this assignment five times and take the average metrics along

with their confidence intervals.

The initial assignment for TS is done using a simple heuristic. For each transaction from

Π, we check and assign the transaction to the resource who has the largest saving for that

transaction, where saving is defined by:

savingsij = bj − tij (5.7)

Here bj signifies the baseline time for the transaction and tij denotes the sampled time for

that transaction for resource i. If all the resources have negative savings for a particular

task, we assign the task to the least negative savings. Thus, the initial allocation matrix

X obtained is then subjected to TS, as explained in Section 4.

Table 5.2 presents the characteristics of the transactions handled by different team leads

and compares the current manual approach with our proposed automated task allocation.

3Other sampling mechanisms such as weighted sampling, where more weights to sampling processing
times from the recent past is applied. A detailed analysis and discussion of different sampling mechanisms
is beyond the scope of this work.
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It can be seen that the current approach leads to a significant number of violations for

the team leads, with the percentage of violations being in the range of 14-46%. Using our

proposed Tabu allocation, the deadline violations were in the range of 2-24%. On average,

the number of violations was improved by 60% across all the team leads. Fig. 5.3 depicts

the comparison of the proposed approach with the current approach. Fig. 5.3(a) depicts

the percentage of violations for the current approach (dotted lines) for the four team leads

and the average percentage of violations, along with the 95% confidence intervals (over

five runs) for the proposed Tabu-based allocation (solid lines). Similarly Fig. 5.3(b) and

Fig. 5.3(c) depict the average utilisation and productivity for the current approach (dotted

lines) and the average utilisation and productivity, along with the 95% confidence intervals

(over five runs), for the TS-based allocation (solid lines). As can be seen, our approach

outperformed the current approach. The percentage of violations was consistently much

smaller than the current approach. Further, the utilisation of resources was smaller than

that of the current approach. In other words, due to the new allocation, the current

resources are able to finish the tasks much earlier. These resources can be better utilised

by assigning them other tasks or reallocating them to other groups. Furthermore, the

productivity of resources is higher than that of the current approach.
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Table 5.2: Comparison of the number of violations and their magnitude for the transactions handled by four team leads from a large
service organisation, for a duration of six months in the year 2016, where Tabu-based allocation results in less violation than the current

allocation

Current allocation Tabu-based allocation
TL1 # Res. # Trans.

% Viol.
Cum. Mag. Viol.

Avg. Util. Avg. Prod.
Avg. Cum. Mag. Viol.

Avg. Util. Avg. Prod.
(in secs) % Viol. (in secs)

Jan

22

308 16.55 23154 12.79 114.72 10.00 11132 11.93 115.59
Feb 100 14.00 11253 11.94 114.73 5.00 3077 11.05 112.30
Mar 111 21.62 62229 18.00 108.34 16.21 11064 14.94 102.50
Apr 1620 19.38 140358 36.69 112.34 6.54 46075 32.19 124.70
May 2700 30.52 324849 36.17 106.14 15.11 134256 31.53 121.83
Jun 2346 27.32 234297 35.67 108.31 12.79 109459 31.30 121.80

TL2

Jan

17

5742 22.34 563531 46.35 127.21 3.03 79614 30.48 193.98
Feb 4782 28.37 572090 46.30 118.75 2.80 83481 28.36 186.89
Mar 6072 26.96 634317 53.54 114.03 2.81 120633 30.10 233.67
Apr 6647 27.26 732574 50.25 119.36 2.45 92278 28.78 207.77
May 6493 24.29 457616 44.01 131.65 10.08 121145 29.94 187.24
Jun 5164 23.99 424336 37.88 192.02 5.80 53523 24.27 209.18

TL3

Jan

32

3737 30.61 985369 53.54 115.17 13.28 429000 43.59 135.58
Feb 2888 35.53 854770 51.17 109.16 13.40 241739 39.45 140.03
Mar 2116 37.43 532662 39.69 109.27 17.72 245589 34.40 134.52
Apr 1825 33.60 607748 40.77 111.12 14.85 151599 32.68 133.90
May 1933 35.75 674532 35.75 111.61 24.21 355669 36.76 120.57
Jun 2198 35.21 935117 41.93 108.25 18.47 292266 33.69 150.83

TL4

Jan

22

1731 45.40 671828 37.68 95.29 20.92 226034 27.90 116.73
Feb 1824 36.51 548773 51.46 105.99 14.65 194856 40.20 165.33
Mar 1317 39.48 490642 42.75 140.01 14.27 146027 31.63 140.01
Apr 1488 43.88 470765 54.15 101.34 16.20 144945 39.97 128.46
May 2979 37.70 939586 50.31 91.58 19.40 342126 39.98 118.40
Jun 4560 42.40 793910 46.14 99.30 17.34 297356 34.98 129.12

Cum. Mag. Viol. - Cumulative Magnitude Violation.
Avg. Util. - Average Utilisation.
Avg. Prod. - Average Production.
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Figure 5.3: Comparison of percentage of violations, average utilisation and produc-
tivity metrics for the four team leads, for both the current approach and the proposed
Tabu-based approach. The solid line in the figures corresponds to the Tabu-based ap-
proach while the dotted line represents the current method. (a) percentage of violations;

(b)utilisation; (c) productivity.

In our evaluations, the proposed approach was able to reduce the number of violations
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by 20% and the magnitude of violations by up to 75%. Furthermore, it increased the

productivity of resources by 10% and the average workload and utilisation was reduced

by 35%, compared to the currently practiced manual task allocation in the organisation.

Our proposed approach is computationally tractable with running times of less than three

minutes. Fig 4.4 shows a comparison of the time taken in ILP and our approach for one

team lead, TL1, over one month of data. Each day, the team lead encounters a different

number of transactions. For example, the graph (Fig. 4.4) shows that on the 22nd day

there were 24 resources with 200 transaction; our TS approach only takes 6.5 seconds with

98% confidence in percentage of violation. As another example, for a team lead who has

1006 tasks in his/her pool and 20 resources, according to Fig. 4.4, ILP takes more than

one hour to assign tasks to the resources, but with our approach, the assignment takes

less than 10 minutes. Table 5.3 explains the detail results regarding time comparison of

ILP and our approach.
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Table 5.3: Running time comparison for Integer Linear programming and Tabu for TL1

Day No nResources nTasks AvgRunTime(s) ILP AvgRunTime(s) Tabu

1 34 336 845.84 156.77

2 35 449 1353.83 300.27

3 31 460 1052.11 442.41

4 32 546 1567.87 669.44

5 3 43 1.98 0.1

6 29 373 788.37 179.83

7 33 549 1467.64 207.84

8 30 558 1429.09 369.61

9 29 466 1047.74 187.78

10 28 583 1243.24 194.67

11 5 103 7.87 0.42

12 28 398 732.70 105.02

13 37 572 1990.59 346.20

14 34 537 2255.12 265.02

15 34 640 2033.95 366.25

16 34 449 1440.04 161.74

17 5 91 1.61 0.42

18 27 393 692.26 167.42

19 32 398 979.41 184.46

20 31 586 1537.53 885.53

21 34 593 1858.50 419.28

22 3 42 2.78 0.36

23 32 415 1031.79 356.98

24 34 522 1455.91 775.76

25 31 529 1341.17 386.81

26 26 437 670.00 162.52

27 4 87 5.43 1.56

28 32 466 1095.15 225.84

29 35 606 2111.94 624.82
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5.6 Chapter Summary

In this chapter, we studied the problem of automated allocation of tasks to human resources

in a SDO setting with the goal of improving the operational KPIs and the processing of high

dimensional data. For this problem, we proposed a meta-heuristic-based task allocation

scheme which aims to minimise the number of tasks missing the deadlines and to minimise

the magnitude by which they are missed, taking into consideration the resource skills,

utilisation, productivity, fairness and KPIs while allocating the tasks. In the experimental

evaluations of transaction data from a large services organisation, the proposed approach

reduced the number of deadline misses and the magnitude of violations by 75%. As future

work, we intend to design an algorithm that dynamically reallocates tasks periodically by

closely monitoring the real-time performance of resources. Although, the data would be

very high dimensional and complex for real-world applications. Further, in future work,

various sampling strategies can be used to select the processing time for a particular task,

instead of a random distribution as in the current work.



Chapter 6

Discussion and Conclusion

This chapter summarises the motivation behind this thesis and presents a discussion of the

main outcomes. Evidence for the achievement of the research aims introduced in Chapter 1

is provided, and future work is proposed to address the limitations of this research.

In a world where big data analytics is gaining more and more importance, the investigation

of detailed characteristics of point cloud data has become a fundamental task. If we assume

that there is an underlying manifold structure to a point cloud, methods that can help to

analyse and understand the data by determining the manifold’s dimensionality, topology

and degree of non-linearity are of increasingly higher value.

In computer science and machine learning research, where we talk about high-performance

computing, fast computing and parallel computing, the traditional ideas in homology

calculation cannot perform well with the amount of noisy, high-dimensional point cloud

data. Such data also becomes computationally costly while processing, which is perhaps

an even more significant challenge.

At a time where neural networks have become more potent in object recognition, the

work of this thesis focused on recognising an object’s topology from sample data without

detecting the object itself. This path has not been accessible to date. Successful learning of

simple topology proved challenging and required development of particular techniques for

avoiding instabilities in the learning process. Without these techniques, early attempts to

learn topology resulted in poor prediction outcomes. Later, these insights made it possible

118
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to develop a high-performing model for complex topology data with a large point cloud.

However, the data sets were generated by a script.

Since directly inferring geometric structure represented by point cloud from complicated

barcodes is not possible, we based our PH approach on supervised learning; consequently,

our results are not strongly influenced by the size of the dataset. More generally, we believe

that PH provides an essential new tool for attacking difficult topology analysis problems for

point cloud data. While much remains to be understood regarding the interface between

PH and machine learning, we hope that this study helps to provide some insight into the

neural network to understand the topology of the data by exploring the impact on concrete,

topologically complex data. Another major problem that will arise as we construct more

sophisticated models is the problem of more complex topology data in a higher dimension.

This thesis presented a series of investigations into these topics, with particular focus on

evaluating the performance of manifold learning, topology analysis and optimisation on

manifolds represented by point cloud data. In each part of the research project, a new

method for addressing several of these aspects was proposed and tested. This resulted

in the development of several point cloud data-based methods. Their potential impact,

limitations and possible directions for future research will be discussed in the following

sections.

6.1 Validation of Non-linear Dimensionality Reduction Meth-

ods (Chapter 2)

In investigating manifold learning techniques, the primary work is to project the data

onto a low-dimensional surface. However, manifold learning is restrictive in the sense that

those surfaces can be non-linear. What if the best representation lies in some weirdly

shaped surface? Non-linear DR techniques cannot recognise the topology distortion that

occurs in the data. This study obtained a sub-optimal representation of the data in lower

dimensions. Although methods like Isomap and LLE create k-nearest neighbour graphs

for DR, this does not help us to understand topological change. This disadvantage is

practically off-set to correct DR method. The main advantage of PH for point cloud data
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is that it can detect the topology distortion during embedding, where residual variance can

fail. This makes PH most useful for embedding of either ad-hoc or very high dimensional

point cloud data.

To our best knowledge, non-linear manifold learning algorithms like Isomap and LLE are

controlled by the tuning parameters k, which defines the neighbourhood size around each

data point. Making k too large or too small can change the nature and dimensionality

of the embedding solution. Another issue is how to deal with new data points. All of

these algorithms are batch algorithms as they rely on neighbourhood graphs to model

the local structure of the data manifold (Izenman, 2012; van der Maaten et al., 2009).

These methods require one to rerun the entire algorithm on a data set consisting of the

original data augmented by the new points. Thus, all the manifold learning algorithms

suffer from not being generalisable (Izenman, 2012). This research, which may improve the

performance of embedding techniques for point cloud data, uses the nearest neighbourhood

size k.

6.2 Topology Detection for 3D Data (Chapter 3)

Motivated to improve the performance of topology detection for large 3D point cloud data,

we applied algorithms for constructing a useful combinatorial representation of topological

information regarding high dimensional data. We generated a substantial amount of 2D

and 3D data with different topological features. Motivated to improve the performance

of topology detection of large 3D point cloud data, deep learning-based strategies were

examined. Most general and supervised learning-based methods and convolutional neural

networks have been used for identifying arbitrary topologies of large point clouds.

The secondary problem studied in this chapter was how to calculate correct Betti numbers

in PH for large point cloud data. The idea behind the use of these point cloud data is to

apply these methods to real-world applications. In this study, we proposed a CNN-based

neural network architecture for processing large point cloud data sampled in a Euclidean

space. This study converted the point set into voxels which is useful for understanding

topological features such as holes, bubbles or their higher dimensional equivalents. To
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handle the non-uniform point sampling issue, we used equal voxel sizes for 3D according

to local point densities. These contributions enabled us to achieve correct PH calculations

on challenging benchmarks of large 3D point clouds.

6.3 Optimisation Over Manifolds (Chapter 4)

Optimisation algorithms on manifolds have shown great ability to find solutions to non-

convex problems in reasonable amounts of time. Research has been performed to solve

many optimisation problems over manifolds. However, these studies have always consid-

ered Riemannian structure. To solve non-convex optimisation problems, whose search

spaces can be of a Riemannian structure, we combined tractable relaxations (when avail-

able) with a Riemannian optimisation procedure (Boumal, 2014). In this study, we ex-

plored the problem without requiring the Riemannian structure. Given the nature and

complexity of non-linearly constrained optimisation problems, it is ridiculous to assume

that a single best algorithm will solve the problem. We expect there to be a variety of

suitable algorithms, each occupying some importance for real-world applications. How

well the proposed algorithm performs remains to be determined, but we feel it could be

important. A promising class of problems are those involving high dimensional manifolds.

The gradient system would require an iterative solver, but the theoretical basis of our

algorithm does not require an accurate solution of the primal-dual equations, and only

one system needs to be solved.

Although we have an exact line-search, we currently use a simple backtracking method for

the curvilinear search. The line-search presumes we are minimising a logarithmic barrier

function and that singularity is encountered somewhere along the search direction. The

search does not fail when there is no singularity, but it can possibly treat this case better

which can be future direction of this research.

The material of chapter 4 has not been published to date and some of it is still exploratory

in its nature.
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6.4 Further Work

The fields of topological data analysis and optimisation on manifolds are gaining growing

attention in research and applications. As we argued in this thesis, tools are readily

available to solve and analyse data processing problems on manifolds, and we contributed

to some of them. But as is conventional with such research attempts, more questions are

left unanswered at the end of the journey than at its onset.

It is essential to identify how to accelerate inference speed of our proposed network, espe-

cially for CNN layers, by sharing more computation in each local voxel. It is also of interest

to find applications in higher dimensional spaces (4D, 5D and more) where CNN-based

method can be tested.

The development, training and testing of the proposed methods on more extensive real-

world data sets is an area of future investigation. There are many possibilities left to inves-

tigate such as the incorporation of more sophisticated techniques from machine learning

to improve accuracy and other performance measures. With the availability of faster com-

puters this area of research has the potential to develop highly competitive state-of-the-art

algorithms. Another development related to this is the use of Betti numbers as a feature

for understanding the connection between PH and machine learning. Our investigation has

addressed this aspect by showing that neural networks can recognise a manifold’s topology

from data without having full access to all details of the manifold.

There are significant, open problems relating to topology learning for networks and medical

data and to designing representations for objects and images. We do not want to specify

the topology for each data category. Instead, we should learn the topology structure from

point cloud data. Given the ability to acquire new training data, an attractive intermediate

step is to learn topology specifications from more detailed labels, without any supervision.

We can be at the limits of current techniques for point cloud representation in high dimen-

sions. The types of models that we would ideally like to build are substantially different

from those that we can build in practice. To model topological properties in more detail,

we will likely need to augment, or entirely replace, the low-level features that we currently

use.
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Further work in optimisation over manifolds would involve a more rigorous study of the

steepest descent method to better understand the geometry of the sparse representation

of the manifold, and hopefully to enable implementation of a deterministic algorithm. For

independent component analysis, it is of interest to identify if the manifold-based methods

presented here can perform as well on a more advanced problem, and perhaps to further

study the potential of the interior point method with Hessian modification.
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Publications During PhD

Candidacy

Over the course of my candidacy, I was involved in and contributed to several works which

are directly related to the main body of my thesis. These are listed here with a brief

description of the topic and my contribution.

In Paul and Chalup (2017), a new PH method was proposed to validate the non-linear

dimensionality reduction. I was the main author and also the main generator of ideas; I

also developed the whole simulation.

In Paul et al. (2017), the primary results from my industrial experience were presented. I

was a part of the ideas generation process and was involved in the design of several key

parts of the architecture. I was also a significant contributor to the content of the article.

Rahul Paul, Stephan K Chalup. “Estimating Betti Numbers using Deep Learning ”. In

preparation

Rahul Paul, Stephan K Chalup. “A Barrier Algorithm Approach for Optimization Prob-

lems Over Non-Linear Manifolds ”. In preparation
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Code to generate data and figures

B.1 Swiss Roll data with all holes

NUM = 10000; % number of points considered

coords3 = zeros(3,NUM)’;

coords4 = zeros(4,NUM)’;

%% Swiss roll with holes

p=4;

roll = zeros(4,NUM);

for i = 1:NUM

x1 = rand*p;

x2 = rand;

roll(1,i) = (1+(2* pi*sqrt(x1)))* cos (2*pi*sqrt(x1));

roll(2,i) = (1+(2* pi*sqrt(x1)))* sin (2*pi*sqrt(x1));

roll(3,i) = 20*x2;

roll(4,i) = x1;

end

coords3 = [roll(1,:)’, roll(2,:)’, roll (3,:)’];

z_1 = 10;

x_1= (1+(2* pi*sqrt (.5)))* cos (2*pi*sqrt (.5));

y_1 = (1+(2* pi*sqrt (.5)))* sin (2*pi*sqrt (.5));

x_2= (1+(2* pi*sqrt (1)))* cos (2*pi*sqrt (1));

y_2 = (1+(2* pi*sqrt (1)))* sin (2*pi*sqrt (1));

x_3= (1+(2* pi*sqrt (1.5)))* cos(2*pi*sqrt (1.5));

y_3 = (1+(2* pi*sqrt (1.5)))* sin(2*pi*sqrt (1.5));

x_4= (1+(2* pi*sqrt (2)))* cos (2*pi*sqrt (2));

y_4 = (1+(2* pi*sqrt (2)))* sin (2*pi*sqrt (2));

x_5= (1+(2* pi*sqrt (2.5)))* cos(2*pi*sqrt (2.5));

y_5 = (1+(2* pi*sqrt (2.5)))* sin(2*pi*sqrt (2.5));
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x_6= (1+(2* pi*sqrt (3)))* cos (2*pi*sqrt (3));

y_6 = (1+(2* pi*sqrt (3)))* sin (2*pi*sqrt (3));

x_7= (1+(2* pi*sqrt (3.5)))* cos(2*pi*sqrt (3.5));

y_7 = (1+(2* pi*sqrt (3.5)))* sin(2*pi*sqrt (3.5));

center_1 =[x_1 ,y_1 ,z_1];

center_2 =[x_2 ,y_2 ,z_1];

center_3 =[x_3 ,y_3 ,z_1];

center_4 =[x_4 ,y_4 ,z_1];

center_5 =[x_5 ,y_5 ,z_1];

center_6 =[x_6 ,y_6 ,z_1];

center_7 =[x_7 ,y_7 ,z_1];

hole_data =[];

temp =[];

for i= 1: size(coords3 (: ,1))

dis_1(i) = sqrt(sum(( coords3(i,:)- center_1 ).^ 2));

dis_2(i) = sqrt(sum(( coords3(i,:)- center_2 ).^ 2));

dis_3(i) = sqrt(sum(( coords3(i,:)- center_3 ).^ 2));

dis_4(i) = sqrt(sum(( coords3(i,:)- center_4 ).^ 2));

dis_5(i) = sqrt(sum(( coords3(i,:)- center_5 ).^ 2));

dis_6(i) = sqrt(sum(( coords3(i,:)- center_6 ).^ 2));

dis_7(i) = sqrt(sum(( coords3(i,:)- center_7 ).^ 2));

if (dis_1(i)>4 && dis_2(i)>4 && dis_3(i)>4 && dis_4(i)>4 &&

dis_5(i)>4 && dis_6(i)>4 && dis_7(i)>4)

%% Remove the dis according to the hole number

hole_data = [hole_data;coords3(i,:)];

temp = [temp;roll(4,i)];

end

end

coords3=hole_data;

B.2 Heated Roll data with all the holes

p=4;

roll = zeros(4,NUM);

for i = 1:NUM

x1 = rand*p;

x2 = rand;

roll(1,i) = (1+(x2 *2 -1)^2)*2* pi*sqrt(x1)*cos (2*pi*sqrt(x1));

roll(2,i) = (1+(x2 *2 -1)^2)*2* pi*sqrt(x1)*sin (2*pi*sqrt(x1)) ;

roll(3,i) = 20*x2;

roll(4,i) = x1;

end

%coords4 = heated ’;
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coords3 = [roll(1,:)’, roll(2,:)’, roll (3,:)’];

z_1 = 10;

x_1= (1+(.5*2 -1)^2)*2* pi*sqrt (.5)* cos(2*pi*sqrt (.5));

y_1= (1+(.5*2 -1)^2)*2* pi*sqrt (.5)* sin(2*pi*sqrt (.5));

x_2= (1+(.5*2 -1)^2)*2* pi*sqrt (1)* cos(2*pi*sqrt (1));

y_2= (1+(.5*2 -1)^2)*2* pi*sqrt (1)* sin(2*pi*sqrt (1));

x_3= (1+(.5*2 -1)^2)*2* pi*sqrt (1.5)* cos(2*pi*sqrt (1.5));

y_3= (1+(.5*2 -1)^2)*2* pi*sqrt (1.5)* sin(2*pi*sqrt (1.5));

x_4= (1+(.5*2 -1)^2)*2* pi*sqrt (2)* cos(2*pi*sqrt (2));

y_4= (1+(.5*2 -1)^2)*2* pi*sqrt (2)* sin(2*pi*sqrt (2));

x_5= (1+(.5*2 -1)^2)*2* pi*sqrt (2.5)* cos(2*pi*sqrt (2.5));

y_5= (1+(.5*2 -1)^2)*2* pi*sqrt (2.5)* sin(2*pi*sqrt (2.5));

x_6= (1+(.5*2 -1)^2)*2* pi*sqrt (3)* cos(2*pi*sqrt (3));

y_6= (1+(.5*2 -1)^2)*2* pi*sqrt (3)* sin(2*pi*sqrt (3));

x_7= (1+(.5*2 -1)^2)*2* pi*sqrt (3.5)* cos(2*pi*sqrt (3.5));

y_7= (1+(.5*2 -1)^2)*2* pi*sqrt (3.5)* sin(2*pi*sqrt (3.5));

center_1 =[x_1 ,y_1 ,z_1];

center_2 =[x_2 ,y_2 ,z_1];

center_3 =[x_3 ,y_3 ,z_1];

center_4 =[x_4 ,y_4 ,z_1];

center_5 =[x_5 ,y_5 ,z_1];

center_6 =[x_6 ,y_6 ,z_1];

center_7 =[x_7 ,y_7 ,z_1];

hole_data =[];

temp =[];

for i= 1: size(coords3 (: ,1))

dis_1(i) = sqrt(sum(( coords3(i,:)- center_1 ).^ 2));

dis_2(i) = sqrt(sum(( coords3(i,:)- center_2 ).^ 2));

dis_3(i) = sqrt(sum(( coords3(i,:)- center_3 ).^ 2));

dis_4(i) = sqrt(sum(( coords3(i,:)- center_4 ).^ 2));

dis_5(i) = sqrt(sum(( coords3(i,:)- center_5 ).^ 2));

dis_6(i) = sqrt(sum(( coords3(i,:)- center_6 ).^ 2));

dis_7(i) = sqrt(sum(( coords3(i,:)- center_7 ).^ 2));

if (dis_1(i)>4 && dis_2(i)>4 && dis_3(i)>4 &&

dis_4(i)>4 && dis_5(i)>4 && dis_6(i)>4 && dis_7(i)>4)

%% Remove the dis according to the hole number

hole_data = [hole_data;coords3(i,:)];

temp = [temp;roll(4,i)];

end

end

coords3=hole_data;

% Twist with hole

points = NUM;

p = 4;

%t=5;
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length = 50;

twists = 3;

twist = zeros(4,points );

for i = 1: points

x1 = rand*p - p/2;

x2 = rand;

twist(1,i) = length*x2;

twist(2,i) = x1*2*pi*cos(pi*twists*x2);

twist(3,i) = x1*2*pi*sin(pi*twists*x2);

twist(4,i) = x1;

end

%coords4 = twist ’;

coords3 = [twist(1,:)’, twist(2,:)’, twist (3,:)’];

slot=length /7;

x_1= slot /2;

y_1 =.5* cos(pi*twists *.5);

z_1 =.65* sin(pi*twists *.65);

x_2 = x_1+slot;

x_3 = x_2+slot;

x_4= x_3+slot;

x_5 = x_4+slot;

x_6 = x_5+slot;

x_7 = x_6+slot;

hole_data =[];

temp =[];

center_1 =[x_1 ,y_1 ,z_1];

center_2 =[x_2 ,y_1 ,z_1];

center_3 =[x_3 ,y_1 ,z_1];

center_4 =[x_4 ,y_1 ,z_1];

center_5 =[x_5 ,y_1 ,z_1];

center_6 =[x_6 ,y_1 ,z_1];

center_7 =[x_7 ,y_1 ,z_1];

for i= 1: size(coords3 (: ,1))

dis_1(i) = sqrt(sum(( coords3(i,:)- center_1 ).^ 2));

dis_2(i) = sqrt(sum(( coords3(i,:)- center_2 ).^ 2));

dis_3(i) = sqrt(sum(( coords3(i,:)- center_3 ).^ 2));

dis_4(i) = sqrt(sum(( coords3(i,:)- center_4 ).^ 2));

dis_5(i) = sqrt(sum(( coords3(i,:)- center_5 ).^ 2));

dis_6(i) = sqrt(sum(( coords3(i,:)- center_6 ).^ 2));

dis_7(i) = sqrt(sum(( coords3(i,:)- center_7 ).^ 2));

if (dis_1(i)>2.5 && dis_2(i)>2.5 && dis_3(i)>2.5 &&

dis_4(i)>2.5 && dis_5(i)>2.5 && dis_6(i)>2.5 &&

dis_7(i)>2.5 )

hole_data = [hole_data;coords3(i,:)];
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temp = [temp;twist(4,i)];

end

end

coords3=hole_data;

B.3 Torus Data Set

NUM =4000

roll = zeros(4,NUM);

for i = 1:NUM

x1 = (2*pi) * rand (1);

x2 = (2*pi) * rand (1);

roll(1,i) = (2+cos(x1))*cos(x2);

roll(2,i) = (2+cos(x1))*sin(x2);

roll(3,i) = sin(x1);

end

coords3 = [roll(1,:)’, roll(2,:)’, roll (3,:)’];

hold on

B.4 Sphere Data Set

NUM =4000

roll = zeros(4,NUM);

for i = 1:NUM

x1 = (2*pi) * rand (1);

x2 = (2*pi) * rand (1);

roll(1,i) = (cos(x1))*cos(x2);

roll(2,i) = (sin(x1))*cos(x2);

roll(3,i) = sin(x2);

end

coords3 = [roll(1,:)’, roll(2,:)’, roll (3,:)’];
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